Suppr超能文献

补体激活和细胞摄取对聚合物功能化蛋白纳米胶囊的响应。

Complement activation and cell uptake responses toward polymer-functionalized protein nanocapsules.

机构信息

Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697-2575, United States.

出版信息

Biomacromolecules. 2012 Apr 9;13(4):974-81. doi: 10.1021/bm300083e. Epub 2012 Mar 14.

Abstract

Self-assembling protein nanocapsules can be engineered for various bionanotechnology applications. Using the dodecahedral scaffold of the E2 subunit from pyruvate dehydrogenase, we introduced non-native surface cysteines for site-directed functionalization. The modified nanoparticle's structural, assembly, and thermostability properties were comparable to the wild-type scaffold (E2-WT), and after conjugation of poly(ethylene glycol) (PEG) to these cysteines, the nanoparticle remained intact and stable up to 79.7 ± 1.8 °C. PEGylation of particles reduced uptake by human monocyte-derived macrophages and MDA-MB-231 breast cancer cells, with decreased uptake as PEG chain length is increased. In vitro C4-depletion and C5a-production assays yielded 97.6 ± 10.8% serum C4 remaining and 40.1 ± 6.0 ng/mL C5a for E2-WT, demonstrating that complement activation is weak for non-PEGylated E2 nanoparticles. Conjugation of PEG to these particles moderately increased complement response to give 79.7 ± 6.0% C4 remaining and 87.6 ± 10.1 ng/mL C5a. Our results demonstrate that PEGylation of the E2 protein nanocapsules can modulate cellular uptake and induce low levels of complement activation, likely via the classical/lectin pathways.

摘要

自组装蛋白纳米胶囊可用于各种生物纳米技术应用。我们利用丙酮酸脱氢酶 E2 亚基的十二面体支架,引入非天然表面半胱氨酸,用于定点功能化。修饰后的纳米颗粒的结构、组装和热稳定性与野生型支架(E2-WT)相当,并且在这些半胱氨酸上接枝聚乙二醇(PEG)后,纳米颗粒仍然完整且稳定,直至 79.7±1.8°C。颗粒的 PEG 化降低了人单核细胞衍生的巨噬细胞和 MDA-MB-231 乳腺癌细胞的摄取,随着 PEG 链长的增加,摄取减少。体外 C4 耗竭和 C5a 产生测定表明,E2-WT 中血清 C4 残留 97.6±10.8%,C5a 为 40.1±6.0ng/mL,表明非 PEG 化 E2 纳米颗粒的补体激活较弱。将 PEG 接枝到这些颗粒上可适度增加补体反应,使 C4 残留 79.7±6.0%,C5a 为 87.6±10.1ng/mL。我们的结果表明,E2 蛋白纳米胶囊的 PEG 化可以调节细胞摄取并诱导低水平的补体激活,可能通过经典/凝集素途径。

相似文献

1
Complement activation and cell uptake responses toward polymer-functionalized protein nanocapsules.
Biomacromolecules. 2012 Apr 9;13(4):974-81. doi: 10.1021/bm300083e. Epub 2012 Mar 14.
2
Protein nanocapsules containing doxorubicin as a pH-responsive delivery system.
Small. 2011 Apr 18;7(8):1051-60. doi: 10.1002/smll.201002242. Epub 2011 Mar 29.
4
pH-responsive nano carriers for doxorubicin delivery.
Pharm Res. 2015 Apr;32(4):1249-63. doi: 10.1007/s11095-014-1530-0. Epub 2014 Oct 7.
6
Evaluation of pegylated lipid nanocapsules versus complement system activation and macrophage uptake.
J Biomed Mater Res A. 2006 Sep 1;78(3):620-8. doi: 10.1002/jbm.a.30711.
7
Engineering PEGylated Polyester Nanoparticles to Reduce Complement-Mediated Infusion Reaction.
Bioconjug Chem. 2021 Oct 20;32(10):2154-2166. doi: 10.1021/acs.bioconjchem.1c00339. Epub 2021 Sep 9.
10

引用本文的文献

1
Multifunctional nanoparticle platform for targeted delivery and vaccines.
iScience. 2025 May 7;28(6):112599. doi: 10.1016/j.isci.2025.112599. eCollection 2025 Jun 20.
2
Engineering Protein Nanoparticles Functionalized with an Immunodominant Antigen to Generate a Q Fever Vaccine.
Bioconjug Chem. 2023 Sep 20;34(9):1653-1666. doi: 10.1021/acs.bioconjchem.3c00317. Epub 2023 Sep 8.
3
4
Macromolecular assembly of bioluminescent protein nanoparticles for enhanced imaging.
Mater Today Bio. 2022 Oct 8;17:100455. doi: 10.1016/j.mtbio.2022.100455. eCollection 2022 Dec 15.
5
Antigen- and scaffold-specific antibody responses to protein nanoparticle immunogens.
Cell Rep Med. 2022 Oct 18;3(10):100780. doi: 10.1016/j.xcrm.2022.100780. Epub 2022 Sep 26.
8
Protein-based nanoparticles in cancer vaccine development.
Nanomedicine. 2019 Jan;15(1):164-174. doi: 10.1016/j.nano.2018.09.004. Epub 2018 Oct 4.
9
Unintended effects of drug carriers: Big issues of small particles.
Adv Drug Deliv Rev. 2018 May;130:90-112. doi: 10.1016/j.addr.2018.06.023. Epub 2018 Jul 3.
10
Anti-Tumor Necrosis Factor α Therapeutics Differentially Affect Infection of Human Macrophages.
Front Immunol. 2018 Jul 31;9:1772. doi: 10.3389/fimmu.2018.01772. eCollection 2018.

本文引用的文献

1
Protein nanocapsules containing doxorubicin as a pH-responsive delivery system.
Small. 2011 Apr 18;7(8):1051-60. doi: 10.1002/smll.201002242. Epub 2011 Mar 29.
2
Chemically modified viruses: principles and applications.
Curr Opin Chem Biol. 2010 Dec;14(6):810-7. doi: 10.1016/j.cbpa.2010.10.005.
6
Non-specific cellular uptake of surface-functionalized quantum dots.
Nanotechnology. 2010 Jul 16;21(28):285105. doi: 10.1088/0957-4484/21/28/285105. Epub 2010 Jun 28.
7
Viral nanoparticles as platforms for next-generation therapeutics and imaging devices.
Nanomedicine. 2010 Oct;6(5):634-41. doi: 10.1016/j.nano.2010.04.005. Epub 2010 Apr 28.
8
Complement activation cascade triggered by PEG-PL engineered nanomedicines and carbon nanotubes: the challenges ahead.
J Control Release. 2010 Sep 1;146(2):175-81. doi: 10.1016/j.jconrel.2010.04.003. Epub 2010 Apr 11.
10
pH-triggered disassembly in a caged protein complex.
Biomacromolecules. 2009 Dec 14;10(12):3199-206. doi: 10.1021/bm900674v.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验