Institut für Theoretische Physik III, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany.
Nature. 2010 Apr 8;464(7290):847-51. doi: 10.1038/nature08942.
At sufficiently low temperatures, condensed-matter systems tend to develop order. A notable exception to this behaviour is the case of quantum spin liquids, in which quantum fluctuations prevent a transition to an ordered state down to the lowest temperatures. There have now been tentative observations of such states in some two-dimensional organic compounds, yet quantum spin liquids remain elusive in microscopic two-dimensional models that are relevant to experiments. Here we show, by means of large-scale quantum Monte Carlo simulations of correlated fermions on a honeycomb lattice (a structure realized in, for example, graphene), that a quantum spin liquid emerges between the state described by massless Dirac fermions and an antiferromagnetically ordered Mott insulator. This unexpected quantum-disordered state is found to be a short-range resonating valence-bond liquid, akin to the one proposed for high-temperature superconductors: the possibility of unconventional superconductivity through doping therefore arises in our system. We foresee the experimental realization of this model system using ultra-cold atoms, or group IV elements arranged in honeycomb lattices.
在足够低的温度下,凝聚态系统往往会呈现出有序状态。然而,有一种显著的例外情况,即量子自旋液体,其中量子涨落阻止了在最低温度下向有序状态的转变。现在已经在一些二维有机化合物中观察到了这种状态的初步迹象,但在与实验相关的微观二维模型中,量子自旋液体仍然难以捉摸。在这里,我们通过在蜂窝状晶格(例如,在石墨烯中实现的结构)上对关联费米子进行大规模量子蒙特卡罗模拟,表明在无质量狄拉克费米子所描述的状态和反铁磁有序莫特绝缘体之间出现了量子无序状态。这种出乎意料的量子无序状态被发现是一种短程共振价带液体,类似于高温超导体中提出的那种:因此,在我们的系统中,通过掺杂可能会出现非常规超导性。我们预计可以使用超冷原子或排列在蜂窝状晶格中的 IV 族元素来实现这个模型系统。