Suppr超能文献

磁共振化学交换饱和传递成像与纳米技术。

Magnetic resonance chemical exchange saturation transfer imaging and nanotechnology.

机构信息

Department of Radiology, Cincinnati Children's Hospital, Cincinnati, OH, USA.

出版信息

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012 Jul-Aug;4(4):389-98. doi: 10.1002/wnan.1167. Epub 2012 Mar 15.

Abstract

Chemical exchange saturation transfer (CEST) agents and paramagnetic CEST (PARACEST) agents display bound water signals that exchange protons with the bulk water. CEST magnetic resonance imaging (MRI) relies on exchangeable protons that resonate at a chemical shift that is distinguishable from the bulk water signal. In some cases, paramagnetic chelates are utilized to shift the bound water frequency further away from the bulk water. Radiofrequency prepulses applied at the appropriate frequency can saturate the exchangeable protons, which transfer into the bulk water pool and lead to reduced equilibrium magnetization. Therefore, CEST and PARACEST agents allow the image contrast to be switched 'on' and 'off' by simply changing the pulse sequence parameters. One of the main limitations with this approach is the inherent insensitivity of MRI to CEST and PARACEST agents. Nanoscale carriers have been developed to improve the limit of detection for these agents, demonstrating the feasibility of in vivo molecular or cellular MRI based on CEST or PARACEST contrast. These carriers have been based on a number of different nanoparticle constructs, such as liposomes, dendrimers, polymers, adenovirus particles, and perfluorocarbon nanoparticles. The unique MRI properties of CEST and PARACEST nanoparticle systems have spawned research into an array of potential medical applications.

摘要

化学交换饱和传递 (CEST) 试剂和顺磁 CEST (PARACEST) 试剂显示出与体相水交换质子的结合水信号。CEST 磁共振成像 (MRI) 依赖于共振频率可与体相水信号区分开的可交换质子。在某些情况下,使用顺磁螯合物将结合水的频率进一步移到体相水之外。在适当频率施加的射频预脉冲可以饱和可交换质子,这些质子转移到体相水池中,导致平衡磁化率降低。因此,CEST 和 PARACEST 试剂可以通过简单地改变脉冲序列参数来切换图像对比度“开”和“关”。这种方法的主要限制之一是 MRI 对 CEST 和 PARACEST 试剂固有不敏感。已经开发了纳米级载体来提高这些试剂的检测极限,证明了基于 CEST 或 PARACEST 对比的体内分子或细胞 MRI 的可行性。这些载体基于许多不同的纳米颗粒结构,如脂质体、树枝状大分子、聚合物、腺病毒颗粒和全氟碳纳米颗粒。CEST 和 PARACEST 纳米颗粒系统的独特 MRI 特性催生了对一系列潜在医学应用的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验