Suppr超能文献

医学信息检索:当前技术水平

Information retrieval in medicine: state of the art.

作者信息

Hersh W R, Greenes R A

机构信息

Decision Systems Group, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115.

出版信息

MD Comput. 1990 Sep-Oct;7(5):302-11.

PMID:2243546
Abstract

Conventional information retrieval systems usually involve searching by terms from controlled vocabularies or by individual words in the text. These systems have been commercially successful but are limited by several problems, including cumbersome interfaces and inconsistency with human indexing. Research on methods that automate indexing and retrieval has been performed to address these problems. The three major types of automated systems are vector-based, probabilistic, and linguistic. This article describes these systems and provides an overview of the field of information retrieval in medicine.

摘要

传统的信息检索系统通常涉及使用受控词汇表中的术语或文本中的单个单词进行搜索。这些系统在商业上取得了成功,但受到几个问题的限制,包括界面繁琐以及与人工索引不一致。为了解决这些问题,人们开展了关于自动索引和检索方法的研究。自动系统的三种主要类型是基于向量的、概率性的和语言学的。本文介绍了这些系统,并概述了医学信息检索领域。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验