Suppr超能文献

光合作用的隐藏功能:一种感应环境条件的系统,可调节植物的适应反应。

The hidden function of photosynthesis: a sensing system for environmental conditions that regulates plant acclimation responses.

机构信息

Junior Research Group Plant Acclimation To Environmental Changes, Protein Analysis by MS, Department of Plant Physiology, Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str 159, 07743 Jena, Germany.

出版信息

Protoplasma. 2012 Jun;249 Suppl 2:S125-36. doi: 10.1007/s00709-012-0398-2. Epub 2012 Mar 23.

Abstract

Plants convert light energy from the sun into chemical energy by photosynthesis. Since they are sessile, they have to deal with a wide range of conditions in their immediate environment. Many abiotic and biotic parameters exhibit considerable fluctuations which can have detrimental effects especially on the efficiency of photosynthetic light harvesting. During evolution, plants, therefore, evolved a number of acclimation processes which help them to adapt photosynthesis to such environmental changes. This includes protective mechanisms such as excess energy dissipation and processes supporting energy redistribution, e.g. state transitions or photosystem stoichiometry adjustment. Intriguingly, all these responses are triggered by photosynthesis itself via the interplay of its light reaction and the Calvin-Benson cycle with the residing environmental condition. Thus, besides its primary function in harnessing and converting light energy, photosynthesis acts as a sensing system for environmental changes that controls molecular acclimation responses which adapt the photosynthetic function to the environmental change. Important signalling parameters directly or indirectly affected by the environment are the pH gradient across the thylakoid membrane and the redox states of components of the photosynthetic electron transport chain and/or electron end acceptors coupled to it. Recent advances demonstrate that these signals control post-translational modifications of the photosynthetic protein complexes and also affect plastid and nuclear gene expression machineries as well as metabolic pathways providing a regulatory framework for an integrated response of the plant to the environment at all cellular levels.

摘要

植物通过光合作用将太阳的光能转化为化学能。由于它们是固定的,所以它们必须应对其周围环境中的各种条件。许多非生物和生物参数都表现出相当大的波动,这可能会对光合作用的光捕获效率产生不利影响。因此,在进化过程中,植物演化出了许多适应过程,帮助它们适应这些环境变化。这包括保护机制,例如过剩能量耗散和支持能量再分配的过程,例如状态转换或光系统化学计量比的调整。有趣的是,所有这些反应都是由光合作用本身通过其光反应和卡尔文-本森循环与驻留环境条件的相互作用触发的。因此,除了其在利用和转化光能方面的主要功能外,光合作用还充当环境变化的感应系统,控制分子适应反应,使光合作用功能适应环境变化。直接或间接受环境影响的重要信号参数是类囊体膜的 pH 梯度以及光合作用电子传递链和/或与之偶联的电子末端受体的组成部分的氧化还原状态。最近的进展表明,这些信号控制光合作用蛋白复合物的翻译后修饰,还影响质体和核基因表达机制以及代谢途径,为植物在所有细胞水平上对环境的综合反应提供了一个调节框架。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验