Suppr超能文献

将生物学信息整合到微阵列实验的统计分析和设计中。

Integrating biological information into the statistical analysis and design of microarray experiments.

机构信息

Department of Dairy Science, University of Wisconsin, Madison, WI 53706, USA.

出版信息

Animal. 2010 Feb;4(2):165-72. doi: 10.1017/S1751731109991054.

Abstract

Microarray technology is a powerful tool for animal functional genomics studies, with applications spanning from gene identification and mapping, to function and control of gene expression. Microarray assays, however, are complex and costly, and hence generally performed with relatively small number of animals. Nevertheless, they generate data sets of unprecedented complexity and dimensionality. Therefore, such trials require careful planning and experimental design, in addition to tailored statistical and computational tools for their appropriate data mining. In this review, we discuss experimental design and data analysis strategies, which incorporate prior genomic and biological knowledge, such as genotypes and gene function and pathway membership. We focus the discussion on the design of genetical genomics studies, and on significance testing for detection of differential expression. It is shown that the use of prior biological information can improve the efficiency of microarray experiments.

摘要

微阵列技术是动物功能基因组学研究的有力工具,其应用范围涵盖基因鉴定和定位、基因表达的功能和调控。然而,微阵列分析复杂且昂贵,因此通常只在相对较少的动物身上进行。尽管如此,它们产生的数据集的复杂性和维度却是前所未有的。因此,这类试验需要仔细的规划和实验设计,以及专门的统计和计算工具来进行适当的数据挖掘。在这篇综述中,我们讨论了实验设计和数据分析策略,这些策略包含了先前的基因组学和生物学知识,如基因型以及基因功能和途径成员。我们将讨论的重点放在遗传基因组学研究的设计上,以及用于检测差异表达的显著性检验上。结果表明,利用先前的生物学信息可以提高微阵列实验的效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验