Suppr超能文献

金属卟啉的结构化学:结合 X 射线晶体学和量子化学研究提供了独特的见解。

The structural chemistry of metallocorroles: combined X-ray crystallography and quantum chemistry studies afford unique insights.

机构信息

Department of Chemistry, University of Tromsø, Norway.

出版信息

Acc Chem Res. 2012 Aug 21;45(8):1203-14. doi: 10.1021/ar200292d. Epub 2012 Mar 23.

Abstract

Although they share some superficial structural similarities with porphyrins, corroles, trianionic ligands with contracted cores, give rise to fundamentally different transition metal complexes in comparison with the dianionic porphyrins. Many metallocorroles are formally high-valent, although a good fraction of them are also noninnocent, with significant corrole radical character. These electronic-structural characteristics result in a variety of fascinating spectroscopic behavior, including highly characteristic, paramagnetically shifted NMR spectra and textbook cases of charge-transfer spectra. Although our early research on corroles focused on spectroscopy, we soon learned that the geometric structures of metallocorroles provide a fascinating window into their electronic-structural characteristics. Thus, we used X-ray structure determinations and quantum chemical studies, chiefly using DFT, to obtain a comprehensive understanding of metallocorrole geometric and electronic structures. This Account describes our studies of the structural chemistry of metallocorroles. At first blush, the planar or mildly domed structure of metallocorroles might appear somewhat uninteresting particularly when compared to metalloporphyrins. Metalloporphyrins, especially sterically hindered ones, are routinely ruffled or saddled, but the missing meso carbon apparently makes the corrole skeleton much more resistant to nonplanar distortions. Ruffling, where the pyrrole rings are alternately twisted about the M-N bonds, is energetically impossible for metallocorroles. Saddling is also uncommon; thus, a number of sterically hindered, fully substituted metallocorroles exhibit almost perfectly planar macrocycle cores. Against this backdrop, copper corroles stand out as an important exception. As a result of an energetically favorable Cu(d(x2-y2))-corrole(π) orbital interaction, copper corroles, even sterically unhindered ones, are inherently saddled. Sterically hindered substituents accentuate this effect, sometimes dramatically. Thus, a crystal structure of a copper β-octakis(trifluoromethyl)-meso-triarylcorrole complex exhibits nearly orthogonal, adjacent pyrrole rings. Intriguingly, the formally isoelectronic silver and gold corroles are much less saddled than their copper congeners because the high orbital energy of the valence d(x2-y2) orbital discourages overlap with the corrole π orbital. A crystal structure of a gold β-octakis(trifluoromethyl)-meso-triarylcorrole complex exhibits a perfectly planar corrole core, which translates to a difference of 85° in the saddling dihedral angles between analogous copper and gold complexes. Gratifyingly, electrochemical, spectroscopic, and quantum chemical studies provide a coherent, theoretical underpinning for these fascinating structural phenomena. With the development of facile one-pot syntheses of corrole macrocycles in the last 10-15 years, corroles are now almost as readily accessible as porphyrins. Like porphyrins, corroles are promising building blocks for supramolecular constructs such as liquid crystals and metal-organic frameworks. However, because of their symmetry properties, corrole-based supramolecular constructs will probably differ substantially from porphyrin-based ones. We are particularly interested in exploiting the inherently saddled, chiral architectures of copper corroles to create novel oriented materials such as chiral liquid crystals. We trust that the fundamental structural principles uncovered in this Account will prove useful as we explore these fascinating avenues.

摘要

虽然它们与卟啉在表面结构上有一些相似之处,但作为具有收缩核的三阴离子配体,与二阴离子卟啉相比,会产生根本不同的过渡金属配合物。许多金属叶啉都是形式上的高价态,尽管其中很大一部分也是非自由基的,具有显著的叶啉自由基特征。这些电子结构特性导致了各种迷人的光谱行为,包括高度特征性的、顺磁位移的 NMR 光谱和典型的电荷转移光谱。虽然我们早期对叶啉的研究集中在光谱学上,但我们很快就了解到金属叶啉的几何结构为我们提供了一个了解其电子结构特征的迷人窗口。因此,我们使用 X 射线结构测定和量子化学研究,主要使用 DFT,全面了解金属叶啉的几何和电子结构。本报告描述了我们对金属叶啉结构化学的研究。乍一看,金属叶啉的平面或轻度凸起的结构可能看起来有些无趣,特别是与金属卟啉相比。金属卟啉,特别是空间位阻较大的卟啉,通常会起皱或下凹,但显然缺少的中碳原子使叶啉骨架更能抵抗非平面扭曲。对于金属叶啉来说,吡咯环沿 M-N 键交替扭曲的起皱是在能量上不可能的。下凹也不常见;因此,许多空间位阻大、完全取代的金属叶啉表现出几乎完全平面的大环核。在这种背景下,铜叶啉作为一个重要的例外引人注目。由于铜(d(x2-y2))-叶啉(π)轨道相互作用的能量有利,即使是空间位阻较小的铜叶啉也固有地呈下凹状。空间位阻较大的取代基会突出这种效应,有时甚至会显著增强。因此,一个铜 β-辛基三(三氟甲基)-meso-三芳基叶啉配合物的晶体结构表现出几乎正交的相邻吡咯环。有趣的是,形式上等电子的银和金叶啉比它们的铜同系物的下凹程度要小得多,因为价 d(x2-y2)轨道的高轨道能量阻碍了与叶啉π轨道的重叠。一个金 β-辛基三(三氟甲基)-meso-三芳基叶啉配合物的晶体结构表现出完全平面的叶啉核,这意味着类似的铜和金配合物的下凹二面角相差 85°。令人高兴的是,电化学、光谱和量子化学研究为这些迷人的结构现象提供了一个连贯的、理论上的基础。随着过去 10-15 年中金属叶啉大环的简便一锅合成方法的发展,金属叶啉现在几乎和卟啉一样容易获得。与卟啉一样,叶啉是构建超分子结构如液晶和金属有机骨架的有前途的构建块。然而,由于它们的对称性质,基于叶啉的超分子结构可能与基于卟啉的结构有很大的不同。我们特别感兴趣的是利用铜叶啉固有的下凹、手性结构来创造新型定向材料,如手性液晶。我们相信,在探索这些迷人的途径时,本报告中揭示的基本结构原理将被证明是有用的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验