Suppr超能文献

采用聚类分析对慢性鼻-鼻窦炎表型进行鉴定。

Identification of chronic rhinosinusitis phenotypes using cluster analysis.

机构信息

Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan.

出版信息

Am J Rhinol Allergy. 2012 May-Jun;26(3):172-6. doi: 10.2500/ajra.2012.26.3749. Epub 2012 Mar 23.

Abstract

BACKGROUND

The pathophysiology of chronic rhinosinusitis (CRS) is not fully understood. In Europe and the United States, major subsets of CRS classification are based on the presence or absence of polyps. Although nasal polyps (NPs) are a critical factor, many other factors also contribute to the pathogenesis of CRS. The aim of this study was to investigate diverse CRS phenotypes using cluster analysis.

METHODS

This was a multicenter study examining clinical data from CRS patients treated at five hospitals. The study design was a retrospective analysis of prospectively collected data. Complete data were available for 425/496 patients. Data were subjected to k-means cluster analysis in an attempt to identify the different phenotypes involved in CRS.

RESULTS

CRS was divided into four clusters. Cluster 1 (n = 180) and cluster 2 (n = 129) comprised patients with low peripheral eosinophil and mucosal eosinophil counts. However, polyp scores in cluster 2 were higher than cluster 1. Cluster 3 (n = 50) comprised patients with very high mucosal eosinophil counts but low polyp and symptom scores. Finally, subjects in cluster 4 (n = 66) showed severe polyposis. Polyp score and mucosal eosinophil count were the strongest predictors of clustering by discriminant analysis.

CONCLUSION

The results of this study identified distinct clinical CRS phenotypes. CRS was classified into four phenotypes based on NPs and mucosal eosinophil counts. Cutoff points for these factors were identified by tree analysis. Additional studies are needed to establish clinical significance of the phenotypes.

摘要

背景

慢性鼻-鼻窦炎(CRS)的病理生理学尚未完全阐明。在欧洲和美国,CRS 分类的主要亚型基于息肉的存在与否。尽管鼻息肉(NPs)是一个关键因素,但许多其他因素也促成了 CRS 的发病机制。本研究旨在通过聚类分析研究不同的 CRS 表型。

方法

这是一项多中心研究,对五家医院治疗的 CRS 患者的临床数据进行了检查。研究设计为前瞻性收集数据的回顾性分析。共有 496 例患者中的 425 例完成了数据分析。对数据进行了 k-均值聚类分析,试图确定 CRS 涉及的不同表型。

结果

CRS 分为四个簇。簇 1(n = 180)和簇 2(n = 129)包括外周嗜酸性粒细胞和黏膜嗜酸性粒细胞计数低的患者。然而,簇 2 的息肉评分高于簇 1。簇 3(n = 50)包括黏膜嗜酸性粒细胞计数非常高但息肉和症状评分低的患者。最后,簇 4(n = 66)的患者表现出严重的多发性息肉。聚类判别分析表明,息肉评分和黏膜嗜酸性粒细胞计数是聚类的最强预测因子。

结论

本研究结果确定了不同的 CRS 临床表型。根据 NPs 和黏膜嗜酸性粒细胞计数,CRS 分为四个表型。通过树分析确定了这些因素的临界值。需要进一步研究以确定表型的临床意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验