Forschungszentrum Jülich, Central Division of Analytical Chemistry, Jülich, Germany.
Electrophoresis. 2012 Feb;33(4):563-6. doi: 10.1002/elps.201100367.
The combination of optical detection techniques like photometry (UV) or laser-induced fluorescence (LIF) with mass spectrometry for capillary electrophoresis offers advantages, both for later use of stand-alone CE-UV or CE-LIF systems and for combined CE-UV-MS or CE-LIF-MS analysis. Faster method development is enabled, the identification of analytes is facilitated, and it allows christian the optical detection scheme to be used for more precise quantification. However, shortcomings of current methodology and equipment hindered the broader use of such detection combinations mainly due to the long distance between the detection points (at least 20 cm). Large shifts in migration times and changes in resolution are visible between the detection traces hindering their straightforward comparison. We present here novel equipment for a robust coupling of CE-LIF-MS with the shortest possible distance between detection points (12 cm) determined by the length of the electrospray needle. In addition, we encourage the use of a normalization of detection traces using a scale of effective electrophoretic mobility to obtain the same x-scale for both detection traces. As an example, the proposed methodology is applied to a mixture of labeled as well as non-labeled N-glycans.
光学检测技术(如紫外光光度计(UV)或激光诱导荧光(LIF))与毛细管电泳相结合,结合使用质谱法,这为独立的 CE-UV 或 CE-LIF 系统的后期使用以及 CE-UV-MS 或 CE-LIF-MS 分析提供了优势。它能够实现更快的方法开发,促进分析物的鉴定,并允许使用光学检测方案进行更精确的定量。然而,当前方法和设备的缺点主要由于检测点之间的距离较长(至少 20 厘米),阻碍了这些检测组合的更广泛应用。在检测痕迹之间可以看到迁移时间的大幅变化和分辨率的变化,这阻碍了它们的直接比较。我们在这里介绍了一种新的设备,用于将 CE-LIF-MS 与检测点之间尽可能短的距离(由电喷雾针的长度决定的 12 厘米)进行稳健耦合。此外,我们鼓励使用有效电泳迁移率的比例来对检测痕迹进行归一化,以获得两个检测痕迹相同的 x 比例。作为一个例子,所提出的方法学被应用于标记和非标记的 N-聚糖混合物。