Suppr超能文献

伴放线放线杆菌感染通过 caspase-3 依赖性机制增强实验性牙周炎中的细胞凋亡。

Aggregatibacter actinomycetemcomitans infection enhances apoptosis in vivo through a caspase-3-dependent mechanism in experimental periodontitis.

机构信息

Department of Periodontology, School and Hospital of Stomatology, Peking University, Beijing, China.

出版信息

Infect Immun. 2012 Jun;80(6):2247-56. doi: 10.1128/IAI.06371-11. Epub 2012 Mar 26.

Abstract

The purpose of this study was to test the hypothesis that diabetes aggravates periodontal destruction induced by Aggregatibacter actinomycetemcomitans infection. Thirty-eight diabetic and 33 normal rats were inoculated with A. actinomycetemcomitans and euthanized at baseline and at 4, 5, and 6 weeks after inoculation. Bone loss and the infiltration of polymorphonuclear leukocytes (PMNs) in gingival epithelium were measured in hematoxylin-eosin-stained sections. The induction of tumor necrosis factor alpha (TNF-α) was evaluated by immunohistochemistry and of apoptotic cells by a TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) assay. After A. actinomycetemcomitans infection, the bone loss in diabetic rats was 1.7-fold and the PMN infiltration 1.6-fold higher than in normoglycemic rats (P < 0.05). The induction of TNF-α was 1.5-fold higher and of apoptotic cells was up to 3-fold higher in diabetic versus normoglycemic rats (P < 0.05). Treatment with a caspase-3 inhibitor significantly blocked noninflammatory cell apoptosis induced by A. actinomycetemcomitans infection in gingival epithelium and connective tissue (P < 0.05). These results provide new insight into how diabetes aggravates A. actinomycetemcomitans-induced periodontal destruction in rats by significantly increasing the inflammatory response, leading to increased bone loss and enhancing apoptosis of gingival epithelial and connective tissue cells through a caspase-3-dependent mechanism. Antibiotics had a more pronounced effect on many of these parameters in diabetic than in normoglycemic rats, suggesting a deficiency in the capacity of diabetic animals to resist infection.

摘要

本研究旨在验证下述假说,即糖尿病会加重伴放线放线杆菌感染引起的牙周破坏。38 只糖尿病大鼠和 33 只正常大鼠接种伴放线放线杆菌,分别于基线和接种后 4、5、6 周处死。苏木精-伊红染色切片测量牙槽骨丧失和牙龈上皮多形核白细胞(PMN)浸润情况。采用免疫组织化学法检测肿瘤坏死因子-α(TNF-α)的诱导,末端脱氧核苷酸转移酶介导的 dUTP 缺口末端标记(TUNEL)法检测凋亡细胞。伴放线放线杆菌感染后,糖尿病大鼠的牙槽骨丧失量是正常血糖大鼠的 1.7 倍,PMN 浸润量是正常血糖大鼠的 1.6 倍(P < 0.05)。TNF-α的诱导是正常血糖大鼠的 1.5 倍,凋亡细胞高达正常血糖大鼠的 3 倍(P < 0.05)。用半胱氨酸天冬氨酸蛋白酶-3 抑制剂处理可显著阻断伴放线放线杆菌感染诱导的牙龈上皮和结缔组织中非炎症性细胞凋亡(P < 0.05)。这些结果为糖尿病如何通过显著增强炎症反应加重伴放线放线杆菌诱导的大鼠牙周破坏提供了新的见解,导致牙槽骨丧失增加,并通过半胱氨酸天冬氨酸蛋白酶-3 依赖机制增强牙龈上皮和结缔组织细胞的凋亡。抗生素对糖尿病大鼠的许多这些参数的作用比正常血糖大鼠更为明显,表明糖尿病动物抵抗感染的能力存在缺陷。

相似文献

2
A.actinomycetemcomitans-induced periodontal disease promotes systemic and local responses in rat periodontium.
J Clin Periodontol. 2012 Apr;39(4):333-41. doi: 10.1111/j.1600-051X.2011.01847.x. Epub 2012 Feb 7.
3
Bacterial infection increases periodontal bone loss in diabetic rats through enhanced apoptosis.
Am J Pathol. 2013 Dec;183(6):1928-1935. doi: 10.1016/j.ajpath.2013.08.017. Epub 2013 Oct 8.
7
Effect of adoptive transfer of antigen-specific B cells on periodontal bone resorption.
J Periodontal Res. 2006 Apr;41(2):101-7. doi: 10.1111/j.1600-0765.2005.00839.x.
9
Prevents Periodontitis Induced by in Rats by Regulating -Defensins.
Comput Math Methods Med. 2022 Feb 27;2022:4968016. doi: 10.1155/2022/4968016. eCollection 2022.
10
Signaling transduction analysis in gingival epithelial cells after infection with Aggregatibacter actinomycetemcomitans.
Mol Oral Microbiol. 2012 Feb;27(1):23-33. doi: 10.1111/j.2041-1014.2011.00629.x. Epub 2011 Nov 15.

引用本文的文献

1
Mitochondrial Dysfunction in Diabetic Periodontitis: Mechanisms and Therapeutic Potential.
J Inflamm Res. 2025 Jan 10;18:115-126. doi: 10.2147/JIR.S492041. eCollection 2025.
4
-acyl homoserine lactones lactonase est816 suppresses biofilm formation and periodontitis in rats mediated by .
J Oral Microbiol. 2024 Jan 7;16(1):2301200. doi: 10.1080/20002297.2023.2301200. eCollection 2024.
6
The burden of diabetes on the soft tissue seal surrounding the dental implants.
Front Physiol. 2023 Feb 16;14:1136973. doi: 10.3389/fphys.2023.1136973. eCollection 2023.
7
Osteoimmunology in Periodontitis and Orthodontic Tooth Movement.
Curr Osteoporos Rep. 2023 Apr;21(2):128-146. doi: 10.1007/s11914-023-00774-x. Epub 2023 Mar 2.
8
Host Response Modulation Therapy in the Diabetes Mellitus-Periodontitis Conjuncture: A Narrative Review.
Pharmaceutics. 2022 Aug 18;14(8):1728. doi: 10.3390/pharmaceutics14081728.
9
Therapeutic Potential of Liraglutide for Diabetes-Periodontitis Comorbidity: Killing Two Birds with One Stone.
J Diabetes Res. 2022 Jul 6;2022:8260111. doi: 10.1155/2022/8260111. eCollection 2022.
10
Novel Insight into the Mechanisms of the Bidirectional Relationship between Diabetes and Periodontitis.
Biomedicines. 2022 Jan 16;10(1):178. doi: 10.3390/biomedicines10010178.

本文引用的文献

1
Diabetes mellitus and periodontitis: a tale of two common interrelated diseases.
Nat Rev Endocrinol. 2011 Jun 28;7(12):738-48. doi: 10.1038/nrendo.2011.106.
3
Interaction of oral bacteria with gingival epithelial cell multilayers.
Mol Oral Microbiol. 2011 Jun;26(3):210-20. doi: 10.1111/j.2041-1014.2011.00609.x. Epub 2011 Mar 28.
4
State of the union between metabolism and the immune system in type 2 diabetes.
Genes Immun. 2011 Jun;12(4):239-50. doi: 10.1038/gene.2011.14. Epub 2011 Mar 10.
7
Inflammation and uncoupling as mechanisms of periodontal bone loss.
J Dent Res. 2011 Feb;90(2):143-53. doi: 10.1177/0022034510385236. Epub 2010 Dec 6.
8
Aggregatibacter actinomycetemcomitans-induced bone loss and antibody response in three rat strains.
J Periodontol. 2011 Jan;82(1):142-50. doi: 10.1902/jop.2010.100250. Epub 2010 Aug 3.
9
Role of the ATM-checkpoint kinase 2 pathway in CDT-mediated apoptosis of gingival epithelial cells.
PLoS One. 2010 Jul 23;5(7):e11714. doi: 10.1371/journal.pone.0011714.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验