Suppr超能文献

利用 2'-O-甲基 RNA 相互作用多核苷酸(RIPtide)微阵列绘制人端粒酶 RNA 假结/模板结构域上的可靶向位点。

Mapping targetable sites on human telomerase RNA pseudoknot/template domain using 2'-OMe RNA-interacting polynucleotide (RIPtide) microarrays.

机构信息

Departmens of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.

出版信息

J Biol Chem. 2012 May 25;287(22):18843-53. doi: 10.1074/jbc.M111.316596. Epub 2012 Mar 26.

Abstract

Most cellular RNAs engage in intrastrand base-pairing that gives rise to complex three-dimensional folds. This self-pairing presents an impediment toward binding of the RNA by nucleic acid-based ligands. An important step in the discovery of RNA-targeting ligands is therefore to identify those regions in a folded RNA that are accessible toward the nucleic acid-based ligand. Because the folding of RNA targets can involve interactions between nonadjacent regions and employ both Watson-Crick and non-Watson-Crick base-pairing, screening of candidate binder ensembles is typically necessary. Microarray-based screening approaches have shown great promise in this regard and have suggested that achieving complete sequence coverage would be a valuable attribute of a next generation system. Here, we report a custom microarray displaying a library of RNA-interacting polynucleotides comprising all possible 2'-OMe RNA sequences from 4- to 8-nucleotides in length. We demonstrate the utility of this array in identifying RNA-interacting polynucleotides that bind tightly and specifically to the highly conserved, functionally essential template/pseudoknot domain of human telomerase RNA and that inhibit telomerase function in vitro.

摘要

大多数细胞 RNA 都会进行链内碱基配对,从而形成复杂的三维折叠。这种自我配对会阻碍 RNA 与基于核酸的配体结合。因此,发现靶向 RNA 的配体的重要步骤是确定折叠 RNA 中那些可接近基于核酸的配体的区域。由于 RNA 靶标的折叠可能涉及非相邻区域之间的相互作用,并采用 Watson-Crick 和非 Watson-Crick 碱基配对,因此通常需要筛选候选结合物的集合。基于微阵列的筛选方法在这方面显示出巨大的潜力,并表明实现完全序列覆盖将是下一代系统的有价值的属性。在这里,我们报告了一种定制的微阵列,该阵列显示了一个由 RNA 相互作用多核苷酸组成的文库,这些多核苷酸包含长度为 4 至 8 个核苷酸的所有可能的 2'-OMe RNA 序列。我们证明了该阵列在识别与人类端粒酶 RNA 的高度保守、功能必需的模板/假结结构域紧密且特异性结合的 RNA 相互作用多核苷酸,并在体外抑制端粒酶功能方面的效用。

相似文献

3
Solution structure and dynamics of the wild-type pseudoknot of human telomerase RNA.
J Mol Biol. 2008 Dec 31;384(5):1249-61. doi: 10.1016/j.jmb.2008.10.005. Epub 2008 Oct 11.
4
Functional analysis of the pseudoknot structure in human telomerase RNA.
Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8080-5; discussion 8077-9. doi: 10.1073/pnas.0502259102. Epub 2005 Apr 22.
5
Structure and function of echinoderm telomerase RNA.
RNA. 2016 Feb;22(2):204-15. doi: 10.1261/rna.053280.115. Epub 2015 Nov 23.
6
Structural conservation in the template/pseudoknot domain of vertebrate telomerase RNA from teleost fish to human.
Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):E5125-34. doi: 10.1073/pnas.1607411113. Epub 2016 Aug 16.
8
Functional importance of telomerase pseudoknot revealed by single-molecule analysis.
Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20339-44. doi: 10.1073/pnas.1017686108. Epub 2011 May 13.
9
A triple helix within a pseudoknot is a conserved and essential element of telomerase RNA.
Mol Cell Biol. 2007 Mar;27(6):2130-43. doi: 10.1128/MCB.01826-06. Epub 2007 Jan 8.
10
A critical stem-loop structure in the CR4-CR5 domain of mammalian telomerase RNA.
Nucleic Acids Res. 2002 Jan 15;30(2):592-7. doi: 10.1093/nar/30.2.592.

引用本文的文献

1
Using Genome Sequence to Enable the Design of Medicines and Chemical Probes.
Chem Rev. 2018 Feb 28;118(4):1599-1663. doi: 10.1021/acs.chemrev.7b00504. Epub 2018 Jan 11.
2
Rational Design of Small Molecules Targeting Oncogenic Noncoding RNAs from Sequence.
Acc Chem Res. 2016 Dec 20;49(12):2698-2704. doi: 10.1021/acs.accounts.6b00326. Epub 2016 Nov 22.
4
Microarray-based technologies for the discovery of selective, RNA-binding molecules.
Methods. 2016 Jul 1;103:188-95. doi: 10.1016/j.ymeth.2016.04.022. Epub 2016 Apr 19.
5
Targeting the HIV RNA genome: high-hanging fruit only needs a longer ladder.
Curr Top Microbiol Immunol. 2015;389:147-69. doi: 10.1007/82_2015_434.
6
Microarrays for identifying binding sites and probing structure of RNAs.
Nucleic Acids Res. 2015 Jan;43(1):1-12. doi: 10.1093/nar/gku1303. Epub 2014 Dec 12.
8
Incorporation of thio-pseudoisocytosine into triplex-forming peptide nucleic acids for enhanced recognition of RNA duplexes.
Nucleic Acids Res. 2014 Apr;42(6):4008-18. doi: 10.1093/nar/gkt1367. Epub 2014 Jan 13.

本文引用的文献

1
Use of RNA in drug design.
Expert Opin Drug Discov. 2007 Jun;2(6):889-903. doi: 10.1517/17460441.2.6.889.
2
Structurally conserved five nucleotide bulge determines the overall topology of the core domain of human telomerase RNA.
Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):18761-8. doi: 10.1073/pnas.1013269107. Epub 2010 Oct 21.
6
Solution structure and dynamics of the wild-type pseudoknot of human telomerase RNA.
J Mol Biol. 2008 Dec 31;384(5):1249-61. doi: 10.1016/j.jmb.2008.10.005. Epub 2008 Oct 11.
7
Targeting RNA with small molecules.
Chem Rev. 2008 Apr;108(4):1171-224. doi: 10.1021/cr0681546. Epub 2008 Mar 25.
9
Perspectives on chemistry and therapeutic applications of Locked Nucleic Acid (LNA).
Chem Rev. 2007 Nov;107(11):4672-97. doi: 10.1021/cr050266u. Epub 2007 Oct 18.
10
Duplex formation of the simplified nucleic acid GNA.
Chembiochem. 2007 May 25;8(8):927-32. doi: 10.1002/cbic.200600435.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验