Department of Neurology, Cerebral Vascular Disease Research Center, University of Miami Miller School of Medicine, Miami, FL, USA.
J Cereb Blood Flow Metab. 2012 Jul;32(7):1362-76. doi: 10.1038/jcbfm.2012.32. Epub 2012 Mar 28.
Mitochondrial dysfunction contributes to the pathophysiology of acute neurologic disorders and neurodegenerative diseases. Bioenergetic failure is the primary cause of acute neuronal necrosis, and involves excitotoxicity-associated mitochondrial Ca(2+) overload, resulting in opening of the inner membrane permeability transition pore and inhibition of oxidative phosphorylation. Mitochondrial energy metabolism is also very sensitive to inhibition by reactive O(2) and nitrogen species, which modify many mitochondrial proteins, lipids, and DNA/RNA, thus impairing energy transduction and exacerbating free radical production. Oxidative stress and Ca(2+)-activated calpain protease activities also promote apoptosis and other forms of programmed cell death, primarily through modification of proteins and lipids present at the outer membrane, causing release of proapoptotic mitochondrial proteins, which initiate caspase-dependent and caspase-independent forms of cell death. This review focuses on three classifications of mitochondrial targets for neuroprotection. The first is mitochondrial quality control, maintained by the dynamic processes of mitochondrial fission and fusion and autophagy of abnormal mitochondria. The second includes targets amenable to ischemic preconditioning, e.g., electron transport chain components, ion channels, uncoupling proteins, and mitochondrial biogenesis. The third includes mitochondrial proteins and other molecules that defend against oxidative stress. Each class of targets exhibits excellent potential for translation to clinical neuroprotection.
线粒体功能障碍导致急性神经紊乱和神经退行性疾病的病理生理学变化。生物能量衰竭是急性神经元坏死的主要原因,涉及兴奋性毒性相关的线粒体 Ca(2+)超载,导致内膜通透性转换孔开放和氧化磷酸化抑制。线粒体能量代谢也非常容易受到活性氧(ROS)和活性氮(RNS)的抑制,这些物质可以修饰许多线粒体蛋白、脂质和 DNA/RNA,从而损害能量转导并加剧自由基的产生。氧化应激和 Ca(2+)-激活的钙蛋白酶活性也会促进细胞凋亡和其他形式的程序性细胞死亡,主要是通过修饰外膜上存在的蛋白质和脂质,导致促凋亡线粒体蛋白的释放,从而引发依赖半胱氨酸天冬氨酸蛋白酶(caspase)和非依赖 caspase 的细胞死亡。这篇综述主要关注线粒体神经保护的三类靶点。第一类是线粒体质量控制,由线粒体分裂和融合以及异常线粒体自噬的动态过程维持。第二类包括可进行缺血预处理的靶点,例如电子传递链成分、离子通道、解偶联蛋白和线粒体生物发生。第三类包括抵抗氧化应激的线粒体蛋白和其他分子。每类靶点都显示出很好的转化为临床神经保护的潜力。