Suppr超能文献

神经胶质通过铜离子稳态控制全身线粒体功能、氧化应激和神经元活力。

Glial controls systemic mitochondrial function, oxidative stress, and neuronal viability via copper ion homeostasis.

机构信息

Department of Biological Sciences, Charles E. Schmidt College of Science, Boca Raton, FL 33412.

Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032.

出版信息

Proc Natl Acad Sci U S A. 2024 Sep 24;121(39):e2320611121. doi: 10.1073/pnas.2320611121. Epub 2024 Sep 17.

Abstract

Cuprous copper [Cu(I)] is an essential cofactor for enzymes that support many fundamental cellular functions including mitochondrial respiration and suppression of oxidative stress. Neurons are particularly reliant on mitochondrial production of ATP, with many neurodegenerative diseases, including Parkinson's disease, associated with diminished mitochondrial function. The gene encodes a ribonuclease that targets pre-mRNA of replication-dependent histones, proteins recently found in yeast to reduce Cu(II) to Cu(I), and when mutated disrupt ATP production, elevates oxidative stress, and severely impacts cell growth. Whether this process supports neuronal and/or systemic physiology in higher eukaryotes is unknown. Previously, we identified , the putative ortholog of , establishing a role for glial in limiting dopamine (DA) neuron excitability and sustaining DA neuron viability. Here, we provide evidence from computational modeling that SWIP-10 protein structure mirrors that of MBLAC1 and locates a loss of function coding mutation at a site expected to disrupt histone RNA hydrolysis. Moreover, we find through genetic, biochemical, and pharmacological studies that deletion of in worms negatively impacts systemic Cu(I) levels, leading to deficits in mitochondrial respiration and ATP production, increased oxidative stress, and neurodegeneration. These phenotypes can be offset in mutants by the Cu(I) enhancing molecule elesclomol and through glial expression of wildtype . Together, these studies reveal a glial-expressed pathway that supports systemic mitochondrial function and neuronal health via regulation of Cu(I) homeostasis, a mechanism that may lend itself to therapeutic strategies to treat devastating neurodegenerative diseases.

摘要

一价铜(Cu(I))是支持许多基本细胞功能的酶的必需辅因子,包括线粒体呼吸和抑制氧化应激。神经元特别依赖于线粒体产生的 ATP,许多神经退行性疾病,包括帕金森病,与线粒体功能下降有关。该基因编码一种核糖核酸酶,该酶靶向复制依赖性组蛋白的前 mRNA,最近在酵母中发现该蛋白可将 Cu(II)还原为 Cu(I),当发生突变时会破坏 ATP 产生、增加氧化应激,并严重影响细胞生长。在高等真核生物中,该过程是否支持神经元和/或全身生理学尚不清楚。以前,我们鉴定了,假定的,在限制多巴胺(DA)神经元兴奋性和维持 DA 神经元活力方面的作用。在这里,我们通过计算建模提供证据表明,SWIP-10 蛋白结构与 MBLAC1 相似,并在预期会破坏组蛋白 RNA 水解的位点发现了一个丧失功能的编码突变。此外,我们通过遗传、生化和药理学研究发现,线虫中 的缺失会导致系统 Cu(I)水平降低,从而导致线粒体呼吸和 ATP 产生减少、氧化应激增加和神经退行性变。这些表型可以通过 Cu(I)增强分子 elesclomol 和通过胶质细胞表达野生型来抵消。总之,这些研究揭示了一种胶质细胞表达的途径,通过调节 Cu(I)稳态来支持全身线粒体功能和神经元健康,这一机制可能为治疗毁灭性神经退行性疾病的治疗策略提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c97/11441482/c352ce349183/pnas.2320611121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验