Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
Adv Exp Med Biol. 2012;740:1193-217. doi: 10.1007/978-94-007-2888-2_54.
Calcium plays a major role in normal functioning of the cells. Deregulation of calcium-mediated signaling has been implicated in many neurodegenerative diseases including Alzheimer's disease. Studies in neurons and mice expressing Alzheimer's disease-associated transgenes have shown that the expression of familial Alzheimer's disease (FAD) mutants of presenilin (PS) and amyloid precursor protein (APP) alter calcium homeostasis and cause synaptic dysfunction and dendritic spine loss in neurons. Mechanistic studies have shown that FAD mutants of presenilin can affect the intracellular calcium levels by affecting the ER calcium stores. A function for presenilins as ER calcium leak channels has been established and studies show that presenilins affect ER calcium load through an effect on IP(3) receptors, ryanodine receptors, or SERCA pumps. Even in the absence of an active gamma-secretase complex, presenilins seem to affect calcium homeostasis suggesting that these two functions of presenilins are independent of each other. Studies using FAD mutants of APP have shown that unlike presenilins, FAD-APP do not affect calcium homeostasis in the absence of Aβ. Both Aβ and presenilins seem to affect calcium homeostasis at very early stages of disease development affecting the synaptic transmission and function prior to neuritic plaque development. Altered calcium signaling differentially regulates genes such as calcineurin, calmodulin kinase II, MAP kinase etc and induces protein modifications and neurite degeneration. Since functional synapses and synaptic transmission are fundamental processes in memory formation, alterations in these processes can lead to neuronal dysfunction and memory deficit as seen in Alzheimer's disease. This chapter gives an overview of calcium signaling in different systems, specifically neurons, the functioning of pre- and post-synaptic signaling, and how their deregulation influences pathology development in Alzheimer's disease.
钙在细胞的正常功能中起着重要作用。钙介导的信号转导失调与许多神经退行性疾病有关,包括阿尔茨海默病。在表达阿尔茨海默病相关转基因的神经元和小鼠中的研究表明,早老素(PS)和淀粉样前体蛋白(APP)的家族性阿尔茨海默病(FAD)突变体的表达改变了钙稳态,并导致神经元中的突触功能障碍和树突棘丢失。机制研究表明,早老素 FAD 突变体可以通过影响内质网钙储存来影响细胞内钙水平。已经确立了早老素作为内质网钙泄漏通道的功能,并且研究表明早老素通过对内质网钙负载的影响而影响 IP(3)受体、兰尼碱受体或 SERCA 泵。即使在没有活性 γ-分泌酶复合物的情况下,早老素似乎也会影响钙稳态,表明早老素的这两个功能彼此独立。使用 APP 的 FAD 突变体的研究表明,与早老素不同,FAD-APP 在没有 Aβ 的情况下不会影响钙稳态。Aβ 和早老素似乎在疾病发展的非常早期阶段影响钙稳态,在神经突斑块发展之前影响突触传递和功能。改变的钙信号通过调节钙调神经磷酸酶、钙调蛋白激酶 II、MAP 激酶等基因,诱导蛋白修饰和神经突退化,从而差异调节基因。由于功能性突触和突触传递是记忆形成的基本过程,因此这些过程的改变会导致神经元功能障碍和记忆缺陷,如阿尔茨海默病所见。本章概述了不同系统(特别是神经元)中的钙信号,前突触和后突触信号的功能,以及它们的失调如何影响阿尔茨海默病中的病理学发展。