Christian Doppler Laboratory for Microwave, Chemistry and Institute of Chemistry, Karl-Franzens-University Graz, Austria.
Chemistry. 2012 Apr 27;18(18):5724-31. doi: 10.1002/chem.201103548. Epub 2012 Mar 27.
A rapid, microwave-assisted hydrothermal method has been developed to access ultrafine ZnO hexagonal microrods of about 3-4 μm in length and 200-300 nm in width by using a 1:5 zinc nitrate/urea precursor system. The size and morphology of these ZnO materials can be influenced by subtle changes in precursor concentration, solvent system, and reaction temperature. Optimized conditions involve the use of a 1:3 water/ethylene glycol solvent system and 10 min microwave heating at 150 °C in a dedicated single-mode microwave reactor with internal temperature control. Carefully executed control experiments ensuring identical heating and cooling profiles, stirring rates, and reactor geometries have demonstrated that for these preparations of ZnO microrods no differences between conventional and microwave dielectric heating are observed. The resulting ZnO microrods exhibited the same crystal phase, primary crystallite size, shape, and size distribution regardless of the heating mode. Similar results were obtained for the ultrafast preparation of ZnO nanoparticles with diameters of approximately 20 nm, synthesized by means of a nonaqueous sol-gel process at 200 °C from a Zn(acac)(2) (acac=acetylacetonate) precursor in benzyl alcohol. The specific role of microwave irradiation in enhancing these nanomaterial syntheses can thus be attributed to a purely thermal effect as a result of higher reaction temperatures, more rapid heating, and a better control of process parameters.
一种快速的微波辅助水热法已经被开发出来,通过使用 1:5 的硝酸锌/尿素前体制备系统,可以得到长度约为 3-4μm、宽度为 200-300nm 的超细 ZnO 六方微米棒。这些 ZnO 材料的尺寸和形态可以通过前体浓度、溶剂体系和反应温度的微小变化来影响。优化条件涉及使用 1:3 的水/乙二醇溶剂体系和 150°C 下 10 分钟的微波加热,在具有内部温度控制的专用单模微波反应器中进行。精心执行的对照实验确保了相同的加热和冷却曲线、搅拌速率和反应器几何形状,证明对于这些 ZnO 微米棒的制备,传统加热和微波介电加热之间没有区别。所得 ZnO 微米棒表现出相同的晶体相、初级晶粒尺寸、形状和尺寸分布,无论加热方式如何。通过在 200°C 下从 Zn(acac)(2)(acac=乙酰丙酮)前体制备在苄醇中的非水溶胶-凝胶过程合成的直径约为 20nm 的 ZnO 纳米粒子的超快制备也得到了类似的结果。因此,微波辐射在增强这些纳米材料合成中的特殊作用可以归因于由于较高的反应温度、更快的加热和更好的过程参数控制而导致的纯热效应。