Institut de Química Computacional and Departament de Química, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain.
Phys Chem Chem Phys. 2012 May 14;14(18):6561-8. doi: 10.1039/c2cp40359e. Epub 2012 Mar 28.
The potential energy surface for the intramolecular excited state hydrogen transfer (IESHT) in ortho-phthalaldehyde (OPA), which generates an enol ketene, has been studied with ab initio calculations (MS-CASPT2//CASSCF). The goal of our study is to establish the mechanistic factors that make the primary phototautomerization step irreversible. Similar to what we recently described for ortho-nitrobenzaldehyde (NBA) (Migani et al., Chem. Commun., 2011, 47, 6383-6385), the IESHT in OPA is characterized by the relocation of two electrons from the in-plane to the out-of-plane orbital system. Consistent with this, OPA has the same IESHT mechanism as NBA. The first step of ketene formation is the hydrogen transfer, which starts on an (n, π*) state. The reaction coordinate goes through a conical intersection with the ground state and leads to a biradical intermediate with a bent ketene moiety. The second step is the linearization of the ketene moiety, which is associated to a change in the electronic configuration from biradical to ketene. Because of the electron relocation, the reverse transfer is similar to a Woodward-Hoffmann forbidden process with a sizeable barrier. This makes the tautomerization irreversible and allows the ketene to react further to biphthalide and benzaldehyde. Together with our previous NBA study, we establish the electronic relocation mechanism as a new mechanism for IESHT. This mechanism explains the different reactivity of OPA and NBA compared to organic photoprotectors, where the IESHT is reversed on a very short time scale.
邻苯二醛(OPA)分子内激发态氢键转移(IESHT)生成烯醇酮的势能面已通过从头算计算(MS-CASPT2//CASSCF)进行了研究。我们研究的目的是确定使初级光互变异构化步骤不可逆的机制因素。与我们最近对邻硝基苯甲醛(NBA)的描述类似(Migani 等人,Chem. Commun.,2011,47,6383-6385),OPA 中的 IESHT 的特征是两个电子从平面内轨道系统迁移到平面外轨道系统。与此一致,OPA 具有与 NBA 相同的 IESHT 机制。烯酮形成的第一步是氢转移,它始于(n,π*)态。反应坐标通过与基态的锥形交叉,并导致具有弯曲烯酮部分的双自由基中间体。第二步是烯酮部分的线性化,这与电子构型从双自由基到烯酮的变化相关联。由于电子重排,反向转移类似于伍德沃德-霍夫曼禁阻过程,具有相当大的势垒。这使得互变异构化不可逆,并允许烯酮进一步反应生成联苯二醛和苯甲醛。结合我们之前对 NBA 的研究,我们确定了电子重排机制作为 IESHT 的一种新机制。该机制解释了 OPA 和 NBA 与有机光保护剂相比的不同反应性,在有机光保护剂中,IESHT 在非常短的时间尺度上是可逆的。