Suppr超能文献

分子内氢键在 GFP 发色团的光物理和光化学中起着至关重要的作用。

Intramolecular hydrogen bonding plays a crucial role in the photophysics and photochemistry of the GFP chromophore.

机构信息

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.

出版信息

J Am Chem Soc. 2012 Jan 25;134(3):1662-72. doi: 10.1021/ja208496s. Epub 2012 Jan 10.

Abstract

In commonly studied GFP chromophore analogues such as 4-(4-hydroxybenzylidene)-1,2-dimethyl-1H-imidazol-5(4H)-one (PHBDI), the dominant photoinduced processes are cis-trans isomerization and subsequent S(1) → S(0) decay via a conical intersection characterized by a highly twisted double bond. The recently synthesized 2-hydroxy-substituted isomer (OHBDI) shows an entirely different photochemical behavior experimentally, since it mainly undergoes ultrafast intramolecular excited-state proton transfer, followed by S(1) → S(0) decay and ground-state reverse hydrogen transfer. We have chosen 4-(2-hydroxybenzylidene)-1H-imidazol-5(4H)-one (OHBI) to model the gas-phase photodynamics of such 2-hydroxy-substituted chromophores. We first use various electronic structure methods (DFT, TDDFT, CC2, DFT/MRCI, OM2/MRCI) to explore the S(0) and S(1) potential energy surfaces of OHBI and to locate the relevant minima, transition state, and minimum-energy conical intersection. These static calculations suggest the following decay mechanism: upon photoexcitation to the S(1) state, an ultrafast adiabatic charge-transfer induced excited-state intramolecular proton transfer (ESIPT) occurs that leads to the S(1) minimum-energy structure. Nearby, there is a S(1)/S(0) minimum-energy conical intersection that allows for an efficient nonadiabatic S(1) → S(0) internal conversion, which is followed by a fast ground-state reverse hydrogen transfer (GSHT). This mechanism is verified by semiempirical OM2/MRCI surface-hopping dynamics simulations, in which the successive ESIPT-GSTH processes are observed, but without cis-trans isomerization (which is a minor path experimentally with less than 5% yield). These gas-phase simulations of OHBI give an estimated first-order decay time of 476 fs for the S(1) state, which is larger but of the same order as the experimental values measured for OHBDI in solution: 270 fs in CH(3)CN and 230 fs in CH(2)Cl(2). The differences between the photoinduced processes of the 2- and 4-hydroxy-substituted chromophores are attributed to the presence or absence of intramolecular hydrogen bonding between the two rings.

摘要

在通常研究的 GFP 生色团类似物中,例如 4-(4-羟基苯亚甲基)-1,2-二甲基-1H-咪唑-5(4H)-酮(PHBDI),主要的光诱导过程是顺反异构化,随后通过具有高度扭曲双键的锥形交叉点进行 S(1)→S(0)衰减。最近合成的 2-羟基取代异构体(OHBDI)在实验中表现出完全不同的光化学行为,因为它主要经历超快分子内激发态质子转移,然后是 S(1)→S(0)衰减和基态反向氢转移。我们选择 4-(2-羟基苯亚甲基)-1H-咪唑-5(4H)-酮(OHBI)来模拟此类 2-羟基取代生色团的气相光动力学。我们首先使用各种电子结构方法(DFT、TDDFT、CC2、DFT/MRCI、OM2/MRCI)来探索 OHBI 的 S(0)和 S(1)势能面,并定位相关的最小值、过渡态和最低能量的锥形交叉点。这些静态计算表明了以下的衰减机制:当光激发到 S(1)态时,会发生超快的绝热电荷转移诱导的激发态分子内质子转移(ESIPT),导致 S(1)最低能量结构。附近有一个 S(1)/S(0)最低能量的锥形交叉点,允许高效的非绝热 S(1)→S(0)内部转换,随后是快速的基态反向氢转移(GSHT)。通过半经验的 OM2/MRCI 表面跳跃动力学模拟验证了这种机制,其中观察到连续的 ESIPT-GSHT 过程,但没有顺反异构化(实验中这种途径的产率较小,不到 5%)。OHBI 的气相模拟给出了 S(1)态的一阶衰减时间估计为 476 fs,这与在溶液中测量到的 OHBDI 的实验值(在 CH(3)CN 中为 270 fs,在 CH(2)Cl(2)中为 230 fs)大致相同,但稍大一些。2-和 4-羟基取代生色团的光诱导过程的差异归因于两个环之间是否存在分子内氢键。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验