Žeželj Milan, Stanković Igor, Belić Aleksandar
Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade, RS-11080 Belgrade, Serbia.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Feb;85(2 Pt 1):021101. doi: 10.1103/PhysRevE.85.021101. Epub 2012 Feb 1.
We investigate finite-size scaling in percolating widthless stick systems with variable aspect ratios in an extensive Monte Carlo simulation study. A generalized scaling function is introduced to describe the scaling behavior of the percolation distribution moments and probability at the percolation threshold. We show that the prefactors in the generalized scaling function depend on the system aspect ratio and exhibit features that are generic to the whole class of the percolating systems. In particular, we demonstrate the existence of a characteristic aspect ratio for which percolation probability at the threshold is scale invariant and definite parity of the prefactors in the generalized scaling function for the first two percolation probability moments.
在一项广泛的蒙特卡罗模拟研究中,我们研究了具有可变纵横比的渗流无宽度棒状系统中的有限尺寸标度。引入了一个广义标度函数来描述渗流阈值处渗流分布矩和概率的标度行为。我们表明,广义标度函数中的前置因子取决于系统纵横比,并展现出整个渗流系统类所共有的特征。特别是,我们证明了存在一个特征纵横比,对于该纵横比,阈值处的渗流概率是标度不变的,并且广义标度函数中前两个渗流概率矩的前置因子具有确定的奇偶性。