Butera P, Pernici M
Dipartimento di Fisica Universita' di Milano-Bicocca and Istituto Nazionale di Fisica Nucleare Sezione di Milano-Bicocca 3 Piazza della Scienza, I-20126 Milano, Italy.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Feb;85(2 Pt 1):021105. doi: 10.1103/PhysRevE.85.021105. Epub 2012 Feb 6.
High-temperature expansions are presently the only viable approach to the numerical calculation of the higher susceptibilities for the spin and the scalar-field models on high-dimensional lattices. The critical amplitudes of these quantities enter into a sequence of universal amplitude ratios that determine the critical equation of state. We have obtained a substantial extension, through order 24, of the high-temperature expansions of the free energy (in presence of a magnetic field) for the Ising models with spin s≥1/2 and for the lattice scalar-field theory with quartic self-interaction on the simple-cubic and the body-centered-cubic lattices in four, five, and six spatial dimensions. A numerical analysis of the higher susceptibilities obtained from these expansions yields results consistent with the widely accepted ideas, based on the renormalization group and the constructive approach to Euclidean quantum field theory, concerning the no-interaction ("triviality") property of the continuum (scaling) limit of spin-s Ising and lattice scalar-field models at and above the upper critical dimensionality.
目前,高温展开是对高维晶格上的自旋和标量场模型进行更高阶磁化率数值计算的唯一可行方法。这些量的临界振幅进入一系列通用振幅比中,这些振幅比决定了临界状态方程。我们已经将具有自旋(s\geq1/2)的伊辛模型以及在四维、五维和六维的简单立方和体心立方晶格上具有四次自相互作用的晶格标量场理论(在存在磁场的情况下)的自由能高温展开扩展到了24阶。对从这些展开中获得的更高阶磁化率进行数值分析,得到的结果与基于重整化群和欧几里得量子场论的构造性方法的广泛接受的观点一致,该观点涉及自旋(s)伊辛模型和晶格标量场模型在高于上临界维数及以上的连续统(标度)极限的无相互作用(“平凡性”)性质。