Butera P, Pernici M
Dipartimento di Fisica Universita' di Milano-Bicocca and Istituto Nazionale di Fisica Nucleare, Sezione di Milano-Bicocca, 3 Piazza della Scienza, 20126 Milano, Italy.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 1):011104. doi: 10.1103/PhysRevE.86.011104. Epub 2012 Jul 5.
We have extended, in most cases through 24th order, the series expansions of the dimer density in powers of the activity in the case of bipartite [(hyper)-simple-cubic and (hyper)-body-centered-cubic] lattices of dimensionalities 2 ≤ d ≤ 7. A numerical analysis of these data yields estimates of the exponents characterizing the Yang-Lee edge singularities for lattice ferromagnetic spin models as d varies between the lower and the upper critical dimensionalities. Our results are consistent with, but more extensive and sometimes more accurate than, those obtained from the existing dimer series or from the estimates of related exponents for lattice animals, branched polymers, and fluids. We mention also that it is possible to obtain estimates of the dimer constants from our series for the various lattices.
在二维到七维的二分晶格([超]简单立方晶格和[超]体心立方晶格)情形下,我们已将二聚体密度按活度幂次展开的级数扩展到多数情况下的24阶。对这些数据进行数值分析,得到了晶格铁磁自旋模型在上下临界维数之间变化时表征杨 - 李边缘奇点的指数估计值。我们的结果与从现有二聚体级数或从晶格动物、支化聚合物和流体相关指数估计中得到的结果一致,但更广泛,有时更精确。我们还提到,从我们针对各种晶格的级数中可以得到二聚体常数的估计值。