Laboratoire de Physique des Solides, CNRS UMR-8502, Univ. Paris Sud, 91405 Orsay Cedex, France.
Phys Rev Lett. 2012 Mar 2;108(9):096802. doi: 10.1103/PhysRevLett.108.096802. Epub 2012 Mar 1.
We study a one-dimensional wire with strong Rashba and Dresselhaus spin-orbit coupling (SOC), which supports Majorana fermions when subject to a Zeeman magnetic field and in the proximity of a superconductor. Using both analytical and numerical techniques we calculate the electronic spin texture of the Majorana end states. We find that the spin polarization of these states depends on the relative magnitude of the Rashba and Dresselhaus SOC components. Moreover, we define and calculate a local "Majorana polarization" and "Majorana density" and argue that they can be used as order parameters to characterize the topological transition between the trivial system and the system exhibiting Majorana bound modes. We find that the local Majorana polarization is correlated to the transverse spin polarization, and we propose to test the presence of Majorana fermions in a 1D system by a spin-polarized density of states measurement.
我们研究了一维线,其具有强的 Rashba 和 Dresselhaus 自旋轨道耦合(SOC),当受到塞曼磁场且在超导体附近时,支持马约拉纳费米子。我们使用分析和数值技术计算了马约拉纳端态的电子自旋结构。我们发现这些态的自旋极化取决于 Rashba 和 Dresselhaus SOC 分量的相对大小。此外,我们定义并计算了局部“马约拉纳极化”和“马约拉纳密度”,并认为它们可用作特征拓扑转变的序参量,从平凡系统到表现出马约拉纳束缚态的系统。我们发现局部马约拉纳极化与横向自旋极化相关,我们提出通过自旋极化的态密度测量来检验一维系统中马约拉纳费米子的存在。