Joint Quantum Institute and Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA.
Phys Rev Lett. 2010 Aug 13;105(7):077001. doi: 10.1103/PhysRevLett.105.077001.
We propose and analyze theoretically an experimental setup for detecting the elusive Majorana particle in semiconductor-superconductor heterostructures. The experimental system consists of one-dimensional semiconductor wire with strong spin-orbit Rashba interaction embedded into a superconducting quantum interference device. We show that the energy spectra of the Andreev bound states at the junction are qualitatively different in topologically trivial (i.e., not containing any Majorana) and nontrivial phases having an even and odd number of crossings at zero energy, respectively. The measurement of the supercurrent through the junction allows one to discern topologically distinct phases and observe a topological phase transition by simply changing the in-plane magnetic field or the gate voltage. The observation of this phase transition will be a direct demonstration of the existence of Majorana particles.
我们提出并理论分析了一种用于在半导体-超导异质结构中探测难以捉摸的马约拉纳粒子的实验装置。实验系统由嵌入超导量子干涉仪的具有强自旋轨道拉什巴相互作用的一维半导体线组成。我们表明,在拓扑平凡(即不包含任何马约拉纳)和非平凡(分别在零能处具有偶数和奇数个交叉)相,结处的安德烈夫束缚态的能谱在定性上是不同的。通过测量通过结的超导电流,人们可以通过简单地改变平面内磁场或栅极电压来区分拓扑不同的相,并观察拓扑相变。这种相变的观察将是马约拉纳粒子存在的直接证明。