Wrześniewski Kacper, Weymann Ireneusz
Faculty of Physics, Institute of Spintronics and Quantum Information, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614, Poznan, Poland.
Sci Rep. 2024 Apr 3;14(1):7815. doi: 10.1038/s41598-024-58344-9.
We theoretically investigate the spin and charge transport properties of a double quantum dot coupled to distinct edges of the nanowire hosting Majorana zero-energy modes. The focus is on the analysis of the currents flowing through the left and right junctions and their cross-correlations. We show that the system reveals very different transport properties depending on the detuning protocol of the quantum dot energy levels. For the symmetric detuning, the current dependencies reveal only two maxima associated with resonant tunneling, and currents in the left and right arms of the system reveal weak positive cross-correlations. On the other hand, for antisymmetric detuning, the flow of electrons into drains is maximized and strongly correlated in one bias voltage direction, while for the opposite bias direction a spin blockade is predicted. Furthermore, we observe a suppression of the current cross-correlations at a highly symmetric detuning point, indicating the involvement of the Majorana zero-energy modes in the transport processes. To gain insight into the role of the spin polarization of the Majorana edge states, we analyze the spin-dependent transport characteristics by considering the relationship between the spin canting angle, which describes the coupling of the Majorana modes to the spin of the quantum dots, and the magnetic configurations of the ferromagnetic drains. Moreover, we examine the non-local zero bias anomaly in the differential conductance, detailed analysis of which revealed a specific operational mode of the device that can facilitate the identification of the Majorana presence in the quantum dot-Majorana wire system. Finally, we also consider the transport properties in different magnetic configurations of the system and discuss the behavior of the associated tunnel magnetoresistance.
我们从理论上研究了与承载马约拉纳零能模的纳米线不同边缘耦合的双量子点的自旋和电荷输运特性。重点在于分析流经左右结的电流及其互相关性。我们表明,根据量子点能级的失谐协议,该系统呈现出非常不同的输运特性。对于对称失谐,电流依赖性仅揭示与共振隧穿相关的两个最大值,并且系统左右臂中的电流呈现出较弱的正互相关性。另一方面,对于反对称失谐,在一个偏置电压方向上,流入漏极的电子流最大化且高度相关,而对于相反的偏置方向,则预测存在自旋阻塞。此外,我们观察到在高度对称的失谐点处电流互相关性受到抑制,这表明马约拉纳零能模参与了输运过程。为了深入了解马约拉纳边缘态的自旋极化作用,我们通过考虑描述马约拉纳模与量子点自旋耦合的自旋倾斜角与铁磁漏极的磁构型之间的关系,来分析自旋相关的输运特性。此外,我们研究了微分电导中的非局部零偏异常,对其详细分析揭示了一种特定的器件工作模式,该模式有助于识别量子点 - 马约拉纳线系统中马约拉纳的存在。最后,我们还考虑了系统在不同磁构型下的输运特性,并讨论了相关隧道磁电阻的行为。