Suppr超能文献

基于具有平滑度和层间约束的改进图割算法在心脏磁共振成像中自动分割左心室。

Automatic cardiac LV segmentation in MRI using modified graph cuts with smoothness and interslice constraints.

作者信息

Albà Xènia, Figueras I Ventura Rosa M, Lekadir Karim, Tobon-Gomez Catalina, Hoogendoorn Corné, Frangi Alejandro F

机构信息

Center for Computational Imaging & Simulation Technologies in Biomedicine, Universitat Pompeu Fabra, Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.

出版信息

Magn Reson Med. 2014 Dec;72(6):1775-84. doi: 10.1002/mrm.25079. Epub 2013 Dec 17.

Abstract

PURPOSE

Magnetic resonance imaging (MRI), specifically late-enhanced MRI, is the standard clinical imaging protocol to assess cardiac viability. Segmentation of myocardial walls is a prerequisite for this assessment. Automatic and robust multisequence segmentation is required to support processing massive quantities of data.

METHODS

A generic rule-based framework to automatically segment the left ventricle myocardium is presented here. We use intensity information, and include shape and interslice smoothness constraints, providing robustness to subject- and study-specific changes. Our automatic initialization considers the geometrical and appearance properties of the left ventricle, as well as interslice information. The segmentation algorithm uses a decoupled, modified graph cut approach with control points, providing a good balance between flexibility and robustness.

RESULTS

The method was evaluated on late-enhanced MRI images from a 20-patient in-house database, and on cine-MRI images from a 15-patient open access database, both using as reference manually delineated contours. Segmentation agreement, measured using the Dice coefficient, was 0.81±0.05 and 0.92±0.04 for late-enhanced MRI and cine-MRI, respectively. The method was also compared favorably to a three-dimensional Active Shape Model approach.

CONCLUSION

The experimental validation with two magnetic resonance sequences demonstrates increased accuracy and versatility.

摘要

目的

磁共振成像(MRI),特别是延迟增强MRI,是评估心脏存活能力的标准临床成像方案。心肌壁的分割是该评估的前提条件。需要自动且稳健的多序列分割来支持处理大量数据。

方法

本文提出了一种基于通用规则的框架,用于自动分割左心室心肌。我们使用强度信息,并纳入形状和层间平滑度约束,以增强对个体和研究特定变化的稳健性。我们的自动初始化考虑了左心室的几何和外观属性以及层间信息。分割算法使用一种带有控制点的解耦、改进的图割方法,在灵活性和稳健性之间实现了良好的平衡。

结果

该方法在来自一个包含20名患者的内部数据库的延迟增强MRI图像上进行了评估,并在来自一个包含15名患者的开放获取数据库的电影MRI图像上进行了评估,两者均使用手动勾勒的轮廓作为参考。使用Dice系数测量的分割一致性,对于延迟增强MRI和电影MRI分别为0.81±0.05和0.92±0.04。该方法与三维主动形状模型方法相比也具有优势。

结论

对两种磁共振序列的实验验证表明准确性和通用性有所提高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验