Centro de Investigación en Nanociencia y Nanotecnología, (Esfera UAB. Campus UAB, Cerdanyola del Vallès, Spain.
Small. 2012 May 21;8(10):1465-91. doi: 10.1002/smll.201101456. Epub 2012 Mar 30.
Different experimental approaches used for structuration of magnetic nanoparticles on surfaces are reviewed. Nanoparticles tend to organize on surfaces through self-assembly mechanisms controlled by non-covalent interactions which are modulated by their shape, size and morphology as well as by other external parameters such as the nature of the solvent or the capping layer. Further control on the structuration can be achieved by the use of external magnetic fields or other structuring techniques, mainly lithographic or atomic force microscopy (AFM)-based techniques. Moreover, results can be improved by chemical functionalization or the use of biological templates. Chemical functionalization of the nanoparticles and/or the surface ensures a proper stability as well as control of the formation of a (sub)monolayer. On the other hand, the use of biological templates facilitates the structuration of several families of nanoparticles, which otherwise may be difficult to form, simply by establishing the experimental conditions required for the structuration of the organic capsule. All these experimental efforts are directed ultimately to the integration of magnetic nanoparticles in sensors which constitute the future generation of hybrid magnetic devices.
本文综述了用于表面磁性纳米粒子结构化的不同实验方法。纳米粒子倾向于通过由非共价相互作用控制的自组装机制在表面上进行组织,这些非共价相互作用受其形状、大小和形态以及其他外部参数(如溶剂的性质或封盖层)的调节。通过使用外部磁场或其他结构化技术(主要是基于光刻或原子力显微镜的技术)可以进一步控制结构化。此外,通过化学功能化或使用生物模板可以改善结果。纳米粒子和/或表面的化学功能化确保了适当的稳定性以及(亚)单层形成的控制。另一方面,生物模板的使用简化了几种纳米粒子家族的结构化,否则这些纳米粒子可能难以形成,只需建立用于有机胶囊结构化的实验条件即可。所有这些实验努力最终都旨在将磁性纳米粒子集成到传感器中,这些传感器构成了混合磁设备的新一代。