Suppr超能文献

冲击波碎石术准确性的定量评估及呼吸运动的影响。

Quantitative assessment of shockwave lithotripsy accuracy and the effect of respiratory motion.

机构信息

Department of Urology, University of Washington School of Medicine, Seattle, Washington 98195, USA.

出版信息

J Endourol. 2012 Aug;26(8):1070-4. doi: 10.1089/end.2012.0042. Epub 2012 Jun 13.

Abstract

BACKGROUND AND PURPOSE

Effective stone comminution during shockwave lithotripsy (SWL) is dependent on precise three-dimensional targeting of the shockwave. Respiratory motion, imprecise targeting or shockwave alignment, and stone movement may compromise treatment efficacy. The purpose of this study was to evaluate the accuracy of shockwave targeting during SWL treatment and the effect of motion from respiration.

PATIENTS AND METHODS

Ten patients underwent SWL for the treatment of 13 renal stones. Stones were targeted fluoroscopically using a Healthtronics Lithotron (five cases) or Dornier Compact Delta II (five cases) shockwave lithotripter. Shocks were delivered at a rate of 1 to 2 Hz with ramping shockwave energy settings of 14 to 26 kV or level 1 to 5. After the low energy pretreatment and protective pause, a commercial diagnostic ultrasound (US) imaging system was used to record images of the stone during active SWL treatment. Shockwave accuracy, defined as the proportion of shockwaves that resulted in stone motion with shockwave delivery, and respiratory stone motion were determined by two independent observers who reviewed the ultrasonographic videos.

RESULTS

Mean age was 51 ± 15 years with 60% men, and mean stone size was 10.5 ± 3.7 mm (range 5-18 mm). A mean of 2675 ± 303 shocks was delivered. Shockwave-induced stone motion was observed with every stone. Accurate targeting of the stone occurred in 60% ± 15% of shockwaves.

CONCLUSIONS

US imaging during SWL revealed that 40% of shockwaves miss the stone and contribute solely to tissue injury, primarily from movement with respiration. These data support the need for a device to deliver shockwaves only when the stone is in target. US imaging provides real-time assessment of stone targeting and accuracy of shockwave delivery.

摘要

背景与目的

在体外冲击波碎石术(SWL)中,有效碎石取决于冲击波的精确三维靶向。呼吸运动、靶向不精确或冲击波定位不当以及结石移动都可能影响治疗效果。本研究旨在评估 SWL 治疗过程中冲击波靶向的准确性以及呼吸运动的影响。

患者与方法

10 例患者因 13 个肾结石接受 SWL 治疗。使用 Healthtronics Lithotron(5 例)或 Dornier Compact Delta II(5 例)冲击波碎石机进行透视下靶向定位。冲击波以 1 至 2Hz 的速度传递,能量设置逐渐增加至 14 至 26kV 或 1 至 5 级。在低能量预处理和保护性暂停后,使用商业诊断超声(US)成像系统记录主动 SWL 治疗过程中结石的图像。通过两位独立观察者查看超声视频来确定冲击波的准确性(定义为冲击波传递导致结石运动的比例)和呼吸相关的结石运动。

结果

平均年龄为 51±15 岁,男性占 60%,结石平均大小为 10.5±3.7mm(范围 5-18mm)。共传递了 2675±303 次冲击波。每个结石都观察到冲击波引起的结石运动。有 60%±15%的冲击波能够准确靶向结石。

结论

SWL 期间的 US 成像显示,40%的冲击波未能靶向结石,仅导致组织损伤,主要是由于呼吸运动导致的。这些数据支持仅在结石处于靶位时传递冲击波的设备的需求。US 成像可实时评估结石靶向和冲击波传递的准确性。

相似文献

1
Quantitative assessment of shockwave lithotripsy accuracy and the effect of respiratory motion.
J Endourol. 2012 Aug;26(8):1070-4. doi: 10.1089/end.2012.0042. Epub 2012 Jun 13.
2
Optimising an escalating shockwave amplitude treatment strategy to protect the kidney from injury during shockwave lithotripsy.
BJU Int. 2012 Dec;110(11 Pt C):E1041-7. doi: 10.1111/j.1464-410X.2012.11207.x. Epub 2012 May 22.
4
Factors predictive of shockwave lithotripsy failure for ureteral stones: why we need to hurry.
Minerva Urol Nefrol. 2019 Dec;71(6):644-650. doi: 10.23736/S0393-2249.19.03346-0. Epub 2019 Jun 4.
5
The Impact of Dust and Confinement on Fragmentation of Kidney Stones by Shockwave Lithotripsy in Tissue Phantoms.
J Endourol. 2019 May;33(5):400-406. doi: 10.1089/end.2018.0516. Epub 2019 Feb 1.
9
Does respiratory gating improve extracorporeal shockwave lithotripsy results?
J Endourol. 1994 Oct;8(5):329-30. doi: 10.1089/end.1994.8.329.

引用本文的文献

2
Matched pair analysis of wide versus narrow focus during shockwave lithotripsy for urolithiasis.
Urolithiasis. 2024 Dec 21;53(1):11. doi: 10.1007/s00240-024-01682-0.
5
Application of ultrasound imaging in the treatment of urinary tract stones.
J Med Ultrason (2001). 2023 Aug 12. doi: 10.1007/s10396-023-01343-6.
7
Can a Dinosaur Think? Implementation of Artificial Intelligence in Extracorporeal Shock Wave Lithotripsy.
Eur Urol Open Sci. 2021 Mar 21;27:33-42. doi: 10.1016/j.euros.2021.02.007. eCollection 2021 May.
9
In-Office Ultrasound Facilitates Timely Clinical Care at a Multidisciplinary Kidney Stone Center.
Urol Pract. 2020 May;7(3):167-173. doi: 10.1097/upj.0000000000000082.
10
Optimisation of shock wave lithotripsy: a systematic review of technical aspects to improve outcomes.
Transl Androl Urol. 2019 Sep;8(Suppl 4):S389-S397. doi: 10.21037/tau.2019.06.07.

本文引用的文献

1
Shock wave technology and application: an update.
Eur Urol. 2011 May;59(5):784-96. doi: 10.1016/j.eururo.2011.02.033. Epub 2011 Feb 23.
2
Shock wave lithotripsy: advances in technology and technique.
Nat Rev Urol. 2009 Dec;6(12):660-70. doi: 10.1038/nrurol.2009.216.
3
Contemporary surgical management of upper urinary tract calculi.
J Urol. 2009 May;181(5):2152-6. doi: 10.1016/j.juro.2009.01.023. Epub 2009 Mar 17.
4
The acute and long-term adverse effects of shock wave lithotripsy.
Semin Nephrol. 2008 Mar;28(2):200-13. doi: 10.1016/j.semnephrol.2008.01.003.
5
Reducing shock number dramatically decreases lesion size in a juvenile kidney model.
J Endourol. 2006 Sep;20(9):607-11. doi: 10.1089/end.2006.20.607.
6
Extracorporeal shock wave lithotripsy of renal pelvis stones with PCK stonelith lithotripter.
Int Urol Nephrol. 2005;37(1):9-11. doi: 10.1007/s11255-004-6085-2.
8
Shockwave lithotripsy: dose-related effects on renal structure, hemodynamics, and tubular function.
J Endourol. 2005 Jan-Feb;19(1):90-101. doi: 10.1089/end.2005.19.90.
9
Effect of stone motion on in vitro comminution efficiency of Storz Modulith SLX.
J Endourol. 2004 Sep;18(7):629-33. doi: 10.1089/end.2004.18.629.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验