Jani Bhairavi, Fuchs Ryan
RNA Biology, New England Biolabs.
J Vis Exp. 2012 Mar 26(61):3702. doi: 10.3791/3702.
In vitro transcription is the synthesis of RNA transcripts by RNA polymerase from a linear DNA template containing the corresponding promoter sequence (T7, T3, SP6) and the gene to be transcribed (Figure 1A). A typical transcription reaction consists of the template DNA, RNA polymerase, ribonucleotide triphosphates, RNase inhibitor and buffer containing Mg(2+) ions. Large amounts of high quality RNA are often required for a variety of applications. Use of in vitro transcription has been reported for RNA structure and function studies such as splicing(1), RNAi experiments in mammalian cells(2), antisense RNA amplification by the "Eberwine method"(3), microarray analysis(4) and for RNA vaccine studies(5). The technique can also be used for producing radiolabeled and dye labeled probes(6). Warren, et al. recently reported reprogramming of human cells by transfection with in vitro transcribed capped RNA(7). The T7 High Yield RNA Synthesis Kit from New England Biolabs has been designed to synthesize up to 180 μg RNA per 20 μl reaction. RNA of length up to 10kb has been successfully transcribed using this kit. Linearized plasmid DNA, PCR products and synthetic DNA oligonucleotides can be used as templates for transcription as long as they have the T7 promoter sequence upstream of the gene to be transcribed. Addition of a 5' end cap structure to the RNA is an important process in eukaryotes. It is essential for RNA stability(8), efficient translation(9), nuclear transport(10) and splicing(11). The process involves addition of a 7-methylguanosine cap at the 5' triphosphate end of the RNA. RNA capping can be carried out post-transcriptionally using capping enzymes or co-transcriptionally using cap analogs. In the enzymatic method, the mRNA is capped using the Vaccinia virus capping enzyme(12,13). The enzyme adds on a 7-methylguanosine cap at the 5' end of the RNA using GTP and S-adenosyl methionine as donors (cap 0 structure). Both methods yield functionally active capped RNA suitable for transfection or other applications(14) such as generating viral genomic RNA for reverse-genetic systems(15) and crystallographic studies of cap binding proteins such as eIF4E(16). In the method described below, the T7 High Yield RNA Synthesis Kit from NEB is used to synthesize capped and uncapped RNA transcripts of Gaussia luciferase (GLuc) and Cypridina luciferase (CLuc). A portion of the uncapped GLuc RNA is capped using the Vaccinia Capping System (NEB). A linearized plasmid containing the GLuc or CLuc gene and T7 promoter is used as the template DNA. The transcribed RNA is transfected into HeLa cells and cell culture supernatants are assayed for luciferase activity. Capped CLuc RNA is used as the internal control to normalize GLuc expression.
体外转录是指RNA聚合酶以包含相应启动子序列(T7、T3、SP6)和待转录基因的线性DNA模板合成RNA转录本的过程(图1A)。典型的转录反应由模板DNA、RNA聚合酶、核糖核苷酸三磷酸、RNase抑制剂以及含Mg(2+)离子的缓冲液组成。多种应用通常需要大量高质量的RNA。据报道,体外转录已用于RNA结构和功能研究,如剪接(1)、哺乳动物细胞中的RNA干扰实验(2)、通过“埃伯温方法”进行的反义RNA扩增(3)、微阵列分析(4)以及RNA疫苗研究(5)。该技术还可用于生产放射性标记和染料标记的探针(6)。沃伦等人最近报道了通过转染体外转录的加帽RNA对人类细胞进行重编程(7)。New England Biolabs公司的T7高产量RNA合成试剂盒设计用于每20 μl反应合成多达180 μg RNA。使用该试剂盒已成功转录出长度达10kb的RNA。只要线性化质粒DNA、PCR产物和合成DNA寡核苷酸在待转录基因上游具有T7启动子序列,就可作为转录模板。在真核生物中,向RNA添加5'端帽结构是一个重要过程。它对于RNA稳定性(8)、高效翻译(9)、核运输(10)和剪接(11)至关重要。该过程涉及在RNA的5'三磷酸末端添加一个7-甲基鸟苷帽。RNA加帽可在转录后使用加帽酶进行,也可在转录过程中使用帽类似物进行。在酶促方法中,使用痘苗病毒加帽酶对mRNA进行加帽(12,13)。该酶以GTP和S-腺苷甲硫氨酸作为供体,在RNA的5'端添加一个7-甲基鸟苷帽(帽0结构)。两种方法都能产生适用于转染或其他应用(14)的功能活性加帽RNA,如为反向遗传系统生成病毒基因组RNA(15)以及对帽结合蛋白如eIF4E进行晶体学研究(16)。在以下所述方法中,使用NEB公司的T7高产量RNA合成试剂盒合成高斯荧光素酶(GLuc)和海萤荧光素酶(CLuc)的加帽和未加帽RNA转录本。一部分未加帽的GLuc RNA使用痘苗加帽系统(NEB)进行加帽。含有GLuc或CLuc基因以及T7启动子的线性化质粒用作模板DNA。将转录的RNA转染到HeLa细胞中,并检测细胞培养上清液中的荧光素酶活性。加帽的CLuc RNA用作内对照以标准化GLuc表达。