Suppr超能文献

电压门控钠离子通道 60:结构、功能和病理生理学。

Voltage-gated sodium channels at 60: structure, function and pathophysiology.

机构信息

Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA.

出版信息

J Physiol. 2012 Jun 1;590(11):2577-89. doi: 10.1113/jphysiol.2011.224204. Epub 2012 Apr 2.

Abstract

Voltage-gated sodium channels initiate action potentials in nerve, muscle and other excitable cells. The sodium current that initiates the nerve action potential was discovered by Hodgkin and Huxley using the voltage clamp technique in their landmark series of papers in The Journal of Physiology in 1952. They described sodium selectivity, voltage-dependent activation and fast inactivation, and they developed a quantitative model for action potential generation that has endured for many decades. This article gives an overview of the legacy that has evolved from their work, including development of conceptual models of sodium channel function, discovery of the sodium channel protein, analysis of its structure and function, determination of its structure at high resolution, definition of the mechanism and structural basis for drug block, and exploration of the role of the sodium channel as a target for disease mutations. Structural models for sodium selectivity and conductance, voltage-dependent activation, fast inactivation and drug block are discussed. A perspective for the future envisions new advances in understanding the structural basis for sodium channel function, the role of sodium channels in disease and the opportunity for discovery of novel therapeutics.

摘要

电压门控钠离子通道在神经、肌肉和其他可兴奋细胞中引发动作电位。霍奇金和赫胥黎于 1952 年在《生理学杂志》上发表了一系列里程碑式的论文,使用电压钳技术发现了引发神经动作电位的钠离子电流。他们描述了钠离子的选择性、电压依赖性激活和快速失活,并为动作电位的产生建立了一个持续了几十年的定量模型。本文概述了从他们的工作中发展而来的遗产,包括钠离子通道功能的概念模型的发展、钠离子通道蛋白的发现、对其结构和功能的分析、在高分辨率下确定其结构、确定药物阻断的机制和结构基础,以及探索钠离子通道作为疾病突变靶点的作用。讨论了钠离子选择性和电导、电压依赖性激活、快速失活和药物阻断的结构模型。对未来的展望设想了在理解钠离子通道功能的结构基础、钠离子通道在疾病中的作用以及发现新型治疗方法方面的新进展。

相似文献

1
Voltage-gated sodium channels at 60: structure, function and pathophysiology.
J Physiol. 2012 Jun 1;590(11):2577-89. doi: 10.1113/jphysiol.2011.224204. Epub 2012 Apr 2.
2
Structure and function of voltage-gated sodium channels at atomic resolution.
Exp Physiol. 2014 Jan;99(1):35-51. doi: 10.1113/expphysiol.2013.071969. Epub 2013 Oct 4.
3
Forty Years of Sodium Channels: Structure, Function, Pharmacology, and Epilepsy.
Neurochem Res. 2017 Sep;42(9):2495-2504. doi: 10.1007/s11064-017-2314-9. Epub 2017 Jun 7.
4
Structural Basis for Pharmacology of Voltage-Gated Sodium and Calcium Channels.
Mol Pharmacol. 2015 Jul;88(1):141-50. doi: 10.1124/mol.114.097659. Epub 2015 Apr 6.
6
Voltage-gated sodium channels viewed through a structural biology lens.
Curr Opin Struct Biol. 2017 Aug;45:74-84. doi: 10.1016/j.sbi.2016.11.022. Epub 2016 Dec 15.
7
Voltage gated sodium and calcium channels: Discovery, structure, function, and Pharmacology.
Channels (Austin). 2023 Dec;17(1):2281714. doi: 10.1080/19336950.2023.2281714. Epub 2023 Nov 20.
8
Structural Pharmacology of Voltage-Gated Sodium Channels.
J Mol Biol. 2021 Aug 20;433(17):166967. doi: 10.1016/j.jmb.2021.166967. Epub 2021 Mar 29.
9
Voltage-gated sodium channels and cancer: is excitability their primary role?
Front Pharmacol. 2015 Jul 29;6:152. doi: 10.3389/fphar.2015.00152. eCollection 2015.

引用本文的文献

1
Ion-channel mRNA expression alterations in a cervical dorsal horn compression induced novel rabbit model of trigeminal neuropathic pain.
Sci Prog. 2025 Jul-Sep;108(3):368504251376909. doi: 10.1177/00368504251376909. Epub 2025 Sep 9.
2
Conformational dynamics underlying slow inactivation in voltage-gated sodium channels.
bioRxiv. 2025 Aug 19:2025.08.14.670348. doi: 10.1101/2025.08.14.670348.
4
Voltage-gated Na channels: key players in the early tumorigenesis of breast cancer.
Pflugers Arch. 2025 Jul 24. doi: 10.1007/s00424-025-03106-3.
5
Variability in reported midpoints of (in)activation of cardiac INa.
J Gen Physiol. 2025 Sep 1;157(5). doi: 10.1085/jgp.202413621. Epub 2025 Jul 16.
9
Preclinical Animal Models to Investigate the Role of Na1.7 Ion Channels in Pain.
Life (Basel). 2025 Apr 12;15(4):640. doi: 10.3390/life15040640.
10
Potential C-terminal domain interactions of the cardiac voltage gated sodium channel.
Sci Rep. 2025 Apr 23;15(1):14100. doi: 10.1038/s41598-025-98912-1.

本文引用的文献

1
Structural basis for gating charge movement in the voltage sensor of a sodium channel.
Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):E93-102. doi: 10.1073/pnas.1118434109. Epub 2011 Dec 12.
2
Gating charge interactions with the S1 segment during activation of a Na+ channel voltage sensor.
Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18825-30. doi: 10.1073/pnas.1116449108. Epub 2011 Oct 31.
3
Na Channel β Subunits: Overachievers of the Ion Channel Family.
Front Pharmacol. 2011 Sep 28;2:53. doi: 10.3389/fphar.2011.00053. eCollection 2011.
4
Mapping the receptor site for alpha-scorpion toxins on a Na+ channel voltage sensor.
Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15426-31. doi: 10.1073/pnas.1112320108. Epub 2011 Aug 29.
5
Structure-function map of the receptor site for β-scorpion toxins in domain II of voltage-gated sodium channels.
J Biol Chem. 2011 Sep 23;286(38):33641-51. doi: 10.1074/jbc.M111.282509. Epub 2011 Jul 27.
6
R1 in the Shaker S4 occupies the gating charge transfer center in the resting state.
J Gen Physiol. 2011 Aug;138(2):155-63. doi: 10.1085/jgp.201110642.
7
The crystal structure of a voltage-gated sodium channel.
Nature. 2011 Jul 10;475(7356):353-8. doi: 10.1038/nature10238.
8
Ion channel voltage sensors: structure, function, and pathophysiology.
Neuron. 2010 Sep 23;67(6):915-28. doi: 10.1016/j.neuron.2010.08.021.
9
NaV1.1 channels and epilepsy.
J Physiol. 2010 Jun 1;588(Pt 11):1849-59. doi: 10.1113/jphysiol.2010.187484. Epub 2010 Mar 1.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验