Department of Chemistry and Biochemistry and the Molecular Biophysics Program, University of Colorado, Boulder, Colorado, United States of America.
PLoS One. 2012;7(3):e33640. doi: 10.1371/journal.pone.0033640. Epub 2012 Mar 30.
The second messenger lipid PIP(3) (phosphatidylinositol-3,4,5-trisphosphate) is generated by the lipid kinase PI3K (phosphoinositide-3-kinase) in the inner leaflet of the plasma membrane, where it regulates a broad array of cell processes by recruiting multiple signaling proteins containing PIP(3)-specific pleckstrin homology (PH) domains to the membrane surface. Despite the broad importance of PIP(3)-specific PH domains, the membrane docking geometry of a PH domain bound to its target PIP(3) lipid on a bilayer surface has not yet been experimentally determined. The present study employs EPR site-directed spin labeling and relaxation methods to elucidate the membrane docking geometry of GRP1 PH domain bound to bilayer-embedded PIP(3). The model target bilayer contains the neutral background lipid PC and both essential targeting lipids: (i) PIP(3) target lipid that provides specificity and affinity, and (ii) PS facilitator lipid that enhances the PIP(3) on-rate via an electrostatic search mechanism. The EPR approach measures membrane depth parameters for 18 function-retaining spin labels coupled to the PH domain, and for calibration spin labels coupled to phospholipids. The resulting depth parameters, together with the known high resolution structure of the co-complex between GRP1 PH domain and the PIP(3) headgroup, provide sufficient constraints to define an optimized, self-consistent membrane docking geometry. In this optimized geometry the PH domain engulfs the PIP(3) headgroup with minimal bilayer penetration, yielding the shallowest membrane position yet described for a lipid binding domain. This binding interaction displaces the PIP(3) headgroup from its lowest energy position and orientation in the bilayer, but the headgroup remains within its energetically accessible depth and angular ranges. Finally, the optimized docking geometry explains previous biophysical findings including mutations observed to disrupt membrane binding, and the rapid lateral diffusion observed for PIP(3)-bound GRP1 PH domain on supported lipid bilayers.
第二信使脂质 PIP(3)(磷脂酰肌醇-3,4,5-三磷酸)由质膜内层的脂质激酶 PI3K(磷酸肌醇-3-激酶)生成,它通过将多个含有 PIP(3)特异性 pleckstrin 同源(PH)结构域的信号蛋白募集到膜表面,调节广泛的细胞过程。尽管 PIP(3)特异性 PH 结构域具有广泛的重要性,但结合到双层表面靶标 PIP(3)脂质的 PH 结构域的膜对接几何形状尚未通过实验确定。本研究采用 EPR 位定向自旋标记和弛豫方法阐明结合双层嵌入 PIP(3)的 GRP1 PH 结构域的膜对接几何形状。该模型靶双层包含中性背景脂质 PC 和两种必需靶向脂质:(i)提供特异性和亲和力的 PIP(3)靶标脂质,以及(ii)增强 PIP(3)结合速率的 PS 促进剂脂质,通过静电搜索机制。EPR 方法测量与 PH 结构域偶联的 18 个保留功能的自旋标记的膜深度参数,以及与磷脂偶联的校准自旋标记的膜深度参数。所得的深度参数,以及 GRP1 PH 结构域与 PIP(3)头部基团的已知高分辨率结构,提供了足够的约束条件来定义优化的、自洽的膜对接几何形状。在这种优化的几何形状中,PH 结构域将 PIP(3)头部基团包裹起来,几乎不穿透双层,产生了迄今为止描述的脂质结合结构域中最浅的膜位置。这种结合相互作用使 PIP(3)头部基团从双层中的最低能量位置和取向移位,但头部基团仍然在其能量可及的深度和角度范围内。最后,优化的对接几何形状解释了以前的生物物理发现,包括观察到的破坏膜结合的突变,以及在支持的脂质双层上观察到的 PIP(3)结合的 GRP1 PH 结构域的快速横向扩散。