Department of Chemistry, Institute of Biophysical Dynamics, James Franck Institute, and Computation Institute, University of Chicago, Chicago, IL 60637, USA.
J Mol Biol. 2013 Sep 9;425(17):3073-90. doi: 10.1016/j.jmb.2013.05.026. Epub 2013 Jun 6.
The pleckstrin homology (PH) domain of the general receptor of phosphoinositides 1 (GRP1) protein selectively binds to a rare signaling phospholipid, phosphatidylinositol (3,4,5)-trisphosphate (PIP3), in the membrane. The specific PIP3 lipid docking of GRP1 PH domain is essential to protein cellular function and is believed to occur in a stepwise process, electrostatic-driven membrane association followed by the specific PIP3 binding. By a combination of all-atom molecular dynamics (MD) simulations, coarse-grained analysis, electron paramagnetic resonance (EPR) membrane docking geometry, and fluorescence resonance energy transfer (FRET) kinetic studies, we have investigated the search and bind process in the GRP1 PH domain at the molecular scale. We simulated the two membrane binding states of the GRP1 PH domain in the PIP3 search process, before and after the GRP1 PH domain docks with the PIP3 lipid. Our results suggest that the background anionic phosphatidylserine lipids, which constitute around one-fifth of the membrane by composition, play a critical role in the initial stages of recruiting protein to the membrane surface through non-specific electrostatic interactions. Our data also reveal a previously unseen transient membrane association mechanism that is proposed to enable a two-dimensional "hopping" search of the membrane surface for the rare PIP3 target lipid. We further modeled the PIP3-bound membrane-protein system using the EPR membrane docking structure for the MD simulations, quantitatively validating the EPR membrane docking structure and augmenting our understanding of the binding interface with atomic-level detail. Several observations and hypotheses reached from our MD simulations are also supported by experimental kinetic studies.
磷脂酰肌醇(1)受体相关蛋白 GRP1 的 Pleckstrin 同源(PH)结构域能够特异性地结合膜中的稀有信号脂质——三磷酸肌醇(PIP3)。GRP1 PH 结构域与 PIP3 脂质的特异性结合对于蛋白质的细胞功能至关重要,且被认为是一个逐步的过程,即静电驱动的膜结合,然后是特异性的 PIP3 结合。通过全原子分子动力学(MD)模拟、粗粒化分析、电子顺磁共振(EPR)膜对接几何形状和荧光共振能量转移(FRET)动力学研究,我们从分子水平研究了 GRP1 PH 结构域的搜索和结合过程。我们模拟了 GRP1 PH 结构域在 PIP3 搜索过程中的两种膜结合状态,即在 GRP1 PH 结构域与 PIP3 脂质对接之前和之后。我们的结果表明,组成膜的约五分之一的背景阴离子磷脂酰丝氨酸脂质通过非特异性静电相互作用在将蛋白质募集到膜表面的初始阶段发挥关键作用。我们的数据还揭示了一种以前未见的瞬时膜结合机制,该机制被认为能够实现对稀有 PIP3 靶脂质的二维“跳跃”搜索。我们进一步使用 EPR 膜对接结构对 MD 模拟中的 PIP3 结合膜蛋白系统进行建模,定量验证了 EPR 膜对接结构,并通过原子级细节增强了我们对结合界面的理解。我们的 MD 模拟得出的一些观察结果和假设也得到了实验动力学研究的支持。