Integrated Science Lab, Department of Physics, Umeå University, Umeå, Sweden.
PLoS One. 2012;7(3):e33721. doi: 10.1371/journal.pone.0033721. Epub 2012 Mar 30.
Researchers use community-detection algorithms to reveal large-scale organization in biological and social networks, but community detection is useful only if the communities are significant and not a result of noisy data. To assess the statistical significance of the network communities, or the robustness of the detected structure, one approach is to perturb the network structure by removing links and measure how much the communities change. However, perturbing sparse networks is challenging because they are inherently sensitive; they shatter easily if links are removed. Here we propose a simple method to perturb sparse networks and assess the significance of their communities. We generate resampled networks by adding extra links based on local information, then we aggregate the information from multiple resampled networks to find a coarse-grained description of significant clusters. In addition to testing our method on benchmark networks, we use our method on the sparse network of the European Court of Justice (ECJ) case law, to detect significant and insignificant areas of law. We use our significance analysis to draw a map of the ECJ case law network that reveals the relations between the areas of law.
研究人员使用社区检测算法来揭示生物和社交网络中的大规模组织,但只有当社区具有重要性且不是噪声数据的结果时,社区检测才有用。为了评估网络社区的统计显著性或检测到的结构的稳健性,一种方法是通过删除链接来扰动网络结构,并测量社区变化的程度。然而,扰动稀疏网络是具有挑战性的,因为它们本质上是敏感的;如果删除链接,它们很容易破碎。在这里,我们提出了一种简单的方法来扰动稀疏网络并评估其社区的显著性。我们通过基于局部信息添加额外的链接来生成重新采样的网络,然后我们从多个重新采样的网络聚合信息,以找到显著聚类的粗粒度描述。除了在基准网络上测试我们的方法外,我们还将我们的方法应用于欧洲法院案例法的稀疏网络,以检测法律的显著和非显著领域。我们使用我们的显著性分析来绘制 ECJ 案例法网络的地图,揭示法律领域之间的关系。