Department of Internal Medicine, Centro Regional de Hemodonación, University of Murcia, Murcia, Spain.
Mol Med. 2012 Jul 18;18(1):762-70. doi: 10.2119/molmed.2012.00017.
Mutations affecting mobile domains of antithrombin induce conformational instability resulting in protein polymerization that associates with a severe clinical phenotype, probably by an unknown gain of function. By homology with other conformational diseases, we speculated that these variants might infect wild-type (WT) monomers reducing the anticoagulant capacity. Infective polymerization of WT polymers and different P1 mutants (p.R425del, p.R425C and p.R425H) were evaluated by using native gels and radiolabeled WT monomers and functional assays. Human embryonic kidney cells expressing the Epstein-Barr nuclear antigen 1 (HEK-EBNA) cells expressing inducible (p.R425del) or two novel constitutive (p.F271S and p.M370T) conformational variants were used to evaluate intracellular and secreted antithrombin under mild stress (pH 6.5 and 39°C for 5 h). We demonstrated the conformational sensitivity of antithrombin London (p.R425del) to form polymers under mild heating. Under these conditions purified antithrombin London recruited WT monomers into growing polymers, reducing the anticoagulant activity. This process was also observed in the plasma of patients with p.R425del, p.R425C and p.R425H mutations. Under moderate stress, coexpression of WT and conformational variants in HEK-EBNA cells increased the intracellular retention of antithrombin and the formation of disulfide-linked polymers, which correlated with impaired secretion and reduction of anticoagulant activity in the medium. Therefore, mutations inducing conformational instability in antithrombin allow its polymerization with the subsequent loss of function, which under stress could sequestrate WT monomers, resulting in a new prothrombotic gain of function, particularly relevant for intracellular antithrombin. The in vitro results suggest a temporal and severe plasma antithrombin deficiency that may contribute to the development of the thrombotic event and to the clinical severity of these mutations.
影响抗凝血酶移动域的突变诱导构象不稳定,导致蛋白质聚合,这与严重的临床表型相关联,可能是通过未知的功能获得。通过与其他构象疾病的同源性,我们推测这些变体可能会感染野生型(WT)单体,从而降低抗凝能力。通过使用天然凝胶和放射性标记的 WT 单体和功能测定来评估 WT 聚合物和不同 P1 突变体(p.R425del、p.R425C 和 p.R425H)的感染性聚合。使用表达可诱导(p.R425del)或两种新型组成型(p.F271S 和 p.M370T)构象变体的人胚肾细胞(HEK-EBNA)表达 Epstein-Barr 核抗原 1(HEK-EBNA)细胞来评估轻度应激(pH6.5 和 39°C 持续 5 小时)下的细胞内和分泌型抗凝血酶。我们证明了抗凝血酶伦敦(p.R425del)在温和加热下形成聚合物的构象敏感性。在这些条件下,纯化的抗凝血酶伦敦募集 WT 单体进入生长中的聚合物,降低抗凝活性。在具有 p.R425del、p.R425C 和 p.R425H 突变的患者血浆中也观察到了这一过程。在中度应激下,WT 和构象变体在 HEK-EBNA 细胞中的共表达增加了抗凝血酶的细胞内保留和二硫键连接聚合物的形成,这与在培养基中分泌受损和抗凝活性降低相关。因此,诱导抗凝血酶构象不稳定的突变允许其与随后的功能丧失聚合,在应激下,这可能会隔离 WT 单体,导致新的促血栓形成功能获得,这对于细胞内抗凝血酶尤为重要。体外结果表明,血浆抗凝血酶存在短暂且严重的缺乏,这可能有助于血栓形成事件的发展和这些突变的临床严重程度。