Kiranyaz Serkan, Ince Turker, Uhlmann Stefan, Gabbouj Moncef
IEEE Trans Syst Man Cybern B Cybern. 2012 Aug;42(4):1169-86. doi: 10.1109/TSMCB.2012.2187891. Epub 2012 Mar 22.
Terrain classification over polarimetric synthetic aperture radar (SAR) images has been an active research field where several features and classifiers have been proposed up to date. However, some key questions, e.g., 1) how to select certain features so as to achieve highest discrimination over certain classes?, 2) how to combine them in the most effective way?, 3) which distance metric to apply?, 4) how to find the optimal classifier configuration for the classification problem in hand?, 5) how to scale/adapt the classifier if large number of classes/features are present?, and finally, 6) how to train the classifier efficiently to maximize the classification accuracy?, still remain unanswered. In this paper, we propose a collective network of (evolutionary) binary classifier (CNBC) framework to address all these problems and to achieve high classification performance. The CNBC framework adapts a "Divide and Conquer" type approach by allocating several NBCs to discriminate each class and performs evolutionary search to find the optimal BC in each NBC. In such an (incremental) evolution session, the CNBC body can further dynamically adapt itself with each new incoming class/feature set without a full-scale retraining or reconfiguration. Both visual and numerical performance evaluations of the proposed framework over two benchmark SAR images demonstrate its superiority and a significant performance gap against several major classifiers in this field.
极地imetric合成孔径雷达(SAR)图像的地形分类一直是一个活跃的研究领域,迄今为止已经提出了多种特征和分类器。然而,一些关键问题,例如:1)如何选择特定特征以在特定类别上实现最高的区分度?2)如何以最有效的方式组合这些特征?3)应用哪种距离度量?4)如何为手头的分类问题找到最优的分类器配置?5)如果存在大量类别/特征,如何对分类器进行扩展/调整?最后,6)如何有效地训练分类器以最大化分类准确率?这些问题仍然没有答案。在本文中,我们提出了一种(进化)二元分类器集体网络(CNBC)框架来解决所有这些问题并实现高分类性能。CNBC框架采用“分而治之”的方法,通过分配多个二元分类器来区分每个类别,并进行进化搜索以在每个二元分类器中找到最优的二元分类器。在这样的(增量)进化过程中,CNBC主体可以进一步动态地适应每个新传入的类别/特征集,而无需进行全面的重新训练或重新配置。在所提出的框架对两幅基准SAR图像进行的视觉和数值性能评估都证明了其优越性以及与该领域的几个主要分类器相比存在显著的性能差距。