Division of Food Data, National Food Agency, SE-75126 Uppsala, Sweden.
J Chem Inf Model. 2012 May 25;52(5):1238-49. doi: 10.1021/ci200429f. Epub 2012 Apr 24.
Structurally different chemical substances may cause similar systemic effects in mammalian cells. It is therefore necessary to go beyond structural comparisons to quantify similarity in terms of their bioactivities. In this work, we introduce a generic methodology to achieve this on the basis of Network Biology principles and using publicly available molecular network topology information. An implementation of this method, denoted QuantMap, is outlined and applied to antidiabetic drugs, NSAIDs, 17β-estradiol, and 12 substances known to disrupt estrogenic pathways. The similarity of any pair of compounds is derived from topological comparison of intracellular protein networks, directly and indirectly associated with the respective query chemicals, via a straightforward pairwise comparison of ranked proteins. Although output derived from straightforward chemical/structural similarity analysis provided some guidance on bioactivity, QuantMap produced substance interrelationships that align well with reports on their respective perturbation properties. We believe that QuantMap has potential to provide substantial assistance to drug repositioning, pharmacology evaluation, and toxicology risk assessment.
结构不同的化学物质可能会在哺乳动物细胞中引起类似的全身效应。因此,有必要超越结构比较,从生物活性方面量化相似性。在这项工作中,我们基于网络生物学原理并使用公开的分子网络拓扑信息,引入了一种通用的方法来实现这一目标。本文概述了该方法的一种实现,称为 QuantMap,并将其应用于抗糖尿病药物、非甾体抗炎药、17β-雌二醇和 12 种已知破坏雌激素途径的物质。任何两种化合物的相似性都是通过直接和间接与各自查询化学物质相关的细胞内蛋白质网络的拓扑比较,通过对排列的蛋白质进行直接的两两比较得出的。尽管直接的基于化学/结构相似性分析得出的结果为生物活性提供了一些指导,但 QuantMap 生成的物质相互关系与它们各自的干扰特性的报告非常吻合。我们相信 QuantMap 有潜力为药物重新定位、药理学评估和毒理学风险评估提供实质性帮助。