Department of Chemistry, 2555 East San Ramon Avenue M/S SB70, California State University, Fresno, Fresno, California 93740, United States.
J Phys Chem A. 2012 Jun 21;116(24):6264-81. doi: 10.1021/jp211799c. Epub 2012 Apr 17.
An important chemical sink for organic peroxy radicals (RO(2)) in the troposphere is reaction with hydroperoxy radicals (HO(2)). Although this reaction is typically assumed to form hydroperoxides as the major products (R1a), acetyl peroxy radicals and acetonyl peroxy radicals have been shown to undergo other reactions (R1b) and (R1c) with substantial branching ratios: RO(2) + HO(2) → ROOH + O(2) (R1a), RO(2) + HO(2) → ROH + O(3) (R1b), RO(2) + HO(2) → RO + OH + O(2) (R1c). Theoretical work suggests that reactions (R1b) and (R1c) may be a general feature of acyl peroxy and α-carbonyl peroxy radicals. In this work, branching ratios for R1a-R1c were derived for six carbonyl-containing peroxy radicals: C(2)H(5)C(O)O(2), C(3)H(7)C(O)O(2), CH(3)C(O)CH(2)O(2), CH(3)C(O)CH(O(2))CH(3), CH(2)ClCH(O(2))C(O)CH(3), and CH(2)ClC(CH(3))(O(2))CHO. Branching ratios for reactions of Cl-atoms with butanal, butanone, methacrolein, and methyl vinyl ketone were also measured as a part of this work. Product yields were determined using a combination of long path Fourier transform infrared spectroscopy, high performance liquid chromatography with fluorescence detection, gas chromatography with flame ionization detection, and gas chromatography-mass spectrometry. The following branching ratios were determined: C(2)H(5)C(O)O(2), Y(R1a) = 0.35 ± 0.1, Y(R1b) = 0.25 ± 0.1, and Y(R1c) = 0.4 ± 0.1; C(3)H(7)C(O)O(2), Y(R1a) = 0.24 ± 0.15, Y(R1b) = 0.29 ± 0.1, and Y(R1c) = 0.47 ± 0.15; CH(3)C(O)CH(2)O(2), Y(R1a) = 0.75 ± 0.13, Y(R1b) = 0, and Y(R1c) = 0.25 ± 0.13; CH(3)C(O)CH(O(2))CH(3), Y(R1a) = 0.42 ± 0.1, Y(R1b) = 0, and Y(R1c) = 0.58 ± 0.1; CH(2)ClC(CH(3))(O(2))CHO, Y(R1a) = 0.2 ± 0.2, Y(R1b) = 0, and Y(R1c) = 0.8 ± 0.2; and CH(2)ClCH(O(2))C(O)CH(3), Y(R1a) = 0.2 ± 0.1, Y(R1b) = 0, and Y(R1c) = 0.8 ± 0.2. The results give insights into possible mechanisms for cycling of OH radicals in the atmosphere.
在对流层中,有机过氧自由基(RO(2))的一个重要化学汇是与过氧氢自由基(HO(2))反应。虽然通常假定该反应主要形成氢过氧化物(R1a),但已证明乙酰过氧自由基和乙酰基过氧自由基会经历其他反应(R1b)和(R1c),具有相当大的分支比:RO(2) + HO(2) → ROOH + O(2)(R1a),RO(2) + HO(2) → ROH + O(3)(R1b),RO(2) + HO(2) → RO + OH + O(2)(R1c)。理论工作表明,反应(R1b)和(R1c)可能是酰基过氧和α-羰基过氧自由基的一般特征。在这项工作中,为六种含羰基的过氧自由基推导了 R1a-R1c 的分支比:C(2)H(5)C(O)O(2)、C(3)H(7)C(O)O(2)、CH(3)C(O)CH(2)O(2)、CH(3)C(O)CH(O(2))CH(3)、CH(2)ClCH(O(2))C(O)CH(3)和 CH(2)ClC(CH(3))(O(2))CHO。作为这项工作的一部分,还测量了氯原子与丁醛、丁酮、甲基丙烯醛和甲基乙烯基酮反应的分支比。使用长路径傅里叶变换红外光谱、带有荧光检测的高效液相色谱、带有火焰电离检测的气相色谱和气相色谱-质谱联用仪来确定产物产率。确定了以下分支比:C(2)H(5)C(O)O(2),Y(R1a) = 0.35 ± 0.1,Y(R1b) = 0.25 ± 0.1,和 Y(R1c) = 0.4 ± 0.1;C(3)H(7)C(O)O(2),Y(R1a) = 0.24 ± 0.15,Y(R1b) = 0.29 ± 0.1,和 Y(R1c) = 0.47 ± 0.15;CH(3)C(O)CH(2)O(2),Y(R1a) = 0.75 ± 0.13,Y(R1b) = 0,和 Y(R1c) = 0.25 ± 0.13;CH(3)C(O)CH(O(2))CH(3),Y(R1a) = 0.42 ± 0.1,Y(R1b) = 0,和 Y(R1c) = 0.58 ± 0.1;CH(2)ClC(CH(3))(O(2))CHO,Y(R1a) = 0.2 ± 0.2,Y(R1b) = 0,和 Y(R1c) = 0.8 ± 0.2;和 CH(2)ClCH(O(2))C(O)CH(3),Y(R1a) = 0.2 ± 0.1,Y(R1b) = 0,和 Y(R1c) = 0.8 ± 0.2。结果为大气中 OH 自由基循环的可能机制提供了见解。