Suppr超能文献

细胞生物学中的 S-谷胱甘肽化信号转导:进展与展望。

S-Glutathionylation signaling in cell biology: progress and prospects.

机构信息

Laboratory of Biochemistry, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.

出版信息

Eur J Pharm Sci. 2012 Aug 15;46(5):279-92. doi: 10.1016/j.ejps.2012.03.010. Epub 2012 Mar 30.

Abstract

S-Glutathionylation is a mechanism of signal transduction by which cells respond effectively and reversibly to redox inputs. The glutathionylation regulates most cellular pathways. It is involved in oxidative cellular response to insult by modulating the transcription factor Nrf2 and inducing the expression of antioxidant genes (ARE); it contributes to cell survival through nuclear translocation of NFkB and activation of survival genes, and to cell death by modulating the activity of caspase 3. It is involved in mitotic spindle formation during cell division by binding cytoskeletal proteins thus contributing to cell proliferation and differentiation. Glutathionylation also interfaces with the mechanism of phosphorylation by modulating several kinases (PKA, CK) and phosphatases (PP2A, PTEN), thus allowing a cross talk between the two processes of signal transduction. Also, skeletal RyR1 channels responsible of muscle excitation-contraction coupling appear to be sensitive to glutathionylation. Members of the ryanodine receptor super family, responsible for Ca(2) release from endoplasmic reticulum stores, contain sulfhydryl groups that function as a redox "switch", which either induces or inhibits Ca(2) release. Finally, but very importantly, glutathionylation of proteins may also act on cell metabolism by modulating enzymes involved in glycosylation, in the Krebs cycle and in mitochondrial oxidative phosphorylation. In this review, we propose a greater role for glutathionylation in cell biology: not only a cellular response to oxidative stress, but an elegant and sensitive mechanism able to respond even to subtle changes in redox balance in the different cellular compartments. Given the wide spectrum of redox-sensitive proteins, we discuss the possibility that different pathways light up by glutathionylation under various pathological conditions. The feature of reversibility of this process also makes it prone to develop targeted drug therapies and monitor the pharmacological effectiveness once identified the sensor proteins involved.

摘要

谷胱甘肽化是一种信号转导机制,通过该机制,细胞能够有效地、可逆地对氧化还原输入做出反应。谷胱甘肽化调节着大多数细胞途径。它参与了细胞对损伤的氧化应激反应,通过调节转录因子 Nrf2 并诱导抗氧化基因 (ARE) 的表达;它通过核易位 NFkB 和激活生存基因促进细胞存活,并通过调节 caspase 3 的活性导致细胞死亡。它通过结合细胞骨架蛋白参与有丝分裂纺锤体的形成,从而有助于细胞增殖和分化。谷胱甘肽化还通过调节几种激酶 (PKA、CK) 和磷酸酶 (PP2A、PTEN) 与磷酸化机制相互作用,从而允许两种信号转导过程之间进行交叉对话。此外,负责肌肉兴奋-收缩耦联的骨骼肌 RyR1 通道似乎对谷胱甘肽化敏感。负责内质网储存钙离子释放的肌浆网受体超家族成员含有巯基,作为氧化还原“开关”,可诱导或抑制钙离子释放。最后,但非常重要的是,蛋白质的谷胱甘肽化也可以通过调节参与糖基化、三羧酸循环和线粒体氧化磷酸化的酶来影响细胞代谢。在这篇综述中,我们提出了谷胱甘肽化在细胞生物学中的更大作用:不仅是细胞对氧化应激的反应,而且是一种优雅而敏感的机制,即使在不同细胞区室的氧化还原平衡发生细微变化时也能做出反应。鉴于具有广泛的氧化还原敏感蛋白,我们讨论了在各种病理条件下谷胱甘肽化可能会激活不同途径的可能性。该过程的可逆性特征也使其易于开发靶向药物治疗,并在确定涉及的传感器蛋白后监测其药理效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验