Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
J Med Chem. 2012 May 10;55(9):4297-308. doi: 10.1021/jm300095s. Epub 2012 Apr 30.
Structures of G protein-coupled receptors (GPCRs) have a proven utility in the discovery of new antagonists and inverse agonists modulating signaling of this important family of clinical targets. Applicability of active-state GPCR structures to virtual screening and rational optimization of agonists, however, remains to be assessed. In this study of adenosine 5' derivatives, we evaluated the performance of an agonist-bound A(2A) adenosine receptor (AR) structure in retrieval of known agonists and then employed the structure to screen for new fragments optimally fitting the corresponding subpocket. Biochemical and functional assays demonstrate high affinity of new derivatives that include polar heterocycles. The binding models also explain modest selectivity gain for some substituents toward the closely related A(1)AR subtype and the modified agonist efficacy of some of these ligands. The study suggests further applicability of in silico fragment screening to rational lead optimization in GPCRs.
G 蛋白偶联受体 (GPCR) 的结构已被证明可用于发现新的拮抗剂和反向激动剂,从而调节这一重要的临床靶标家族的信号转导。然而,激动剂的活性状态 GPCR 结构在虚拟筛选和合理优化中的适用性仍有待评估。在这项关于腺苷 5' 衍生物的研究中,我们评估了激动剂结合的 A(2A) 腺苷受体 (AR) 结构在检索已知激动剂方面的性能,然后利用该结构筛选与相应亚口袋最佳匹配的新片段。生化和功能测定表明,新衍生物具有高亲和力,其中包括极性杂环。结合模型还解释了一些取代基对密切相关的 A(1)AR 亚型的适度选择性增益,以及这些配体中一些的修饰激动剂效力。该研究表明,基于计算机的片段筛选在 GPCR 中的合理先导优化中具有进一步的适用性。