Suppr超能文献

人体大脑能量消耗的定量成像。

Quantitative imaging of energy expenditure in human brain.

机构信息

Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.

出版信息

Neuroimage. 2012 May 1;60(4):2107-17. doi: 10.1016/j.neuroimage.2012.02.013. Epub 2012 Feb 17.

Abstract

Despite the essential role of the brain energy generated from ATP hydrolysis in supporting cortical neuronal activity and brain function, it is challenging to noninvasively image and directly quantify the energy expenditure in the human brain. In this study, we applied an advanced in vivo(31)P MRS imaging approach to obtain regional cerebral metabolic rates of high-energy phosphate reactions catalyzed by ATPase (CMR(ATPase)) and creatine kinase (CMR(CK)), and to determine CMR(ATPase) and CMR(CK) in pure gray mater (GM) and white mater (WM), respectively. It was found that both ATPase and CK rates are three times higher in GM than WM; and CMR(CK) is seven times higher than CMR(ATPase) in GM and WM. Among the total brain ATP consumption in the human cortical GM and WM, 77% of them are used by GM in which approximately 96% is by neurons. A single cortical neuron utilizes approximately 4.7 billion ATPs per second in a resting human brain. This study demonstrates the unique utility of in vivo(31)P MRS imaging modality for direct imaging of brain energy generated from ATP hydrolysis, and provides new insights into the human brain energetics and its role in supporting neuronal activity and brain function.

摘要

尽管大脑中由三磷酸腺苷(ATP)水解产生的能量对于支持皮质神经元活动和大脑功能至关重要,但目前仍然难以对其进行非侵入性成像和直接定量测量。在这项研究中,我们应用了一种先进的体内磷磁共振波谱成像((31)P MRS)方法,以获得由 ATP 酶(CMR(ATPase))和肌酸激酶(CMR(CK))催化的高能磷酸盐反应的区域性脑代谢率,并分别确定纯灰质(GM)和白质(WM)中的 CMR(ATPase)和 CMR(CK)。结果发现,ATP 酶和 CK 的速率在 GM 中是 WM 的三倍;并且 GM 中的 CMR(CK)比 CMR(ATPase)高 7 倍,在 WM 中则高 5 倍。在人类皮质 GM 和 WM 中的总大脑 ATP 消耗中,约有 77%被 GM 消耗,其中约 96%是由神经元消耗的。在静息状态下的人类大脑中,单个皮质神经元每秒消耗约 47 亿个 ATP。本研究证明了体内磷磁共振波谱成像方法在直接成像由 ATP 水解产生的大脑能量方面具有独特的应用价值,并为人类大脑能量学及其在支持神经元活动和大脑功能方面的作用提供了新的见解。

相似文献

1
Quantitative imaging of energy expenditure in human brain.
Neuroimage. 2012 May 1;60(4):2107-17. doi: 10.1016/j.neuroimage.2012.02.013. Epub 2012 Feb 17.
2
Contribution of structural brain phenotypes to the variance in resting energy expenditure in healthy Caucasian subjects.
J Appl Physiol (1985). 2018 Aug 1;125(2):320-327. doi: 10.1152/japplphysiol.00690.2017. Epub 2017 Sep 21.
3
In vivo phosphocreatine and ATP in piglet cerebral gray and white matter during seizures.
Brain Res. 1998 Feb 2;783(1):19-27. doi: 10.1016/s0006-8993(97)01268-7.
5
Altered brain high-energy phosphate metabolism in mild Alzheimer's disease: A 3-dimensional P MR spectroscopic imaging study.
Neuroimage Clin. 2018 Feb 28;18:254-261. doi: 10.1016/j.nicl.2018.01.031. eCollection 2018.
7
Selective metabolic reduction in gray matter acutely following human traumatic brain injury.
J Neurotrauma. 2004 Feb;21(2):149-61. doi: 10.1089/089771504322778613.
8
Indirect evidence for early widespread gray matter involvement in relapsing-remitting multiple sclerosis.
Neuroimage. 2004 Apr;21(4):1825-9. doi: 10.1016/j.neuroimage.2003.12.008.
10
Regional brain gray and white matter changes in perinatally HIV-infected adolescents.
Neuroimage Clin. 2013 Oct 29;4:29-34. doi: 10.1016/j.nicl.2013.10.012. eCollection 2014.

引用本文的文献

2
Mechanisms of Traumatic Spinal Cord Injury AIS Grade Conversion.
Neurotrauma Rep. 2025 Jun 16;6(1):506-524. doi: 10.1089/neur.2025.0035. eCollection 2025.
3
4
A multiscale electro-metabolic model of a rat neocortical circuit reveals the impact of ageing on central cortical layers.
PLoS Comput Biol. 2025 May 20;21(5):e1013070. doi: 10.1371/journal.pcbi.1013070. eCollection 2025 May.
5
How do neurons live long and healthy? The mechanism of neuronal genome integrity.
Front Neurosci. 2025 Mar 19;19:1552790. doi: 10.3389/fnins.2025.1552790. eCollection 2025.
6
8
Neuronal activity inhibits mitochondrial transport only in synaptically connected segments of the axon.
Front Cell Neurosci. 2024 Dec 4;18:1509283. doi: 10.3389/fncel.2024.1509283. eCollection 2024.
9
Autologous mitochondrial transplant for acute cerebral ischemia: Phase 1 trial results and review.
J Cereb Blood Flow Metab. 2024 Dec 4:271678X241305230. doi: 10.1177/0271678X241305230.
10
Proteomics analysis in rats reveals convergent mechanisms between major depressive disorder and dietary zinc deficiency.
Pharmacol Rep. 2025 Feb;77(1):145-157. doi: 10.1007/s43440-024-00681-7. Epub 2024 Dec 3.

本文引用的文献

1
FLASH imaging: rapid NMR imaging using low flip-angle pulses. 1986.
J Magn Reson. 2011 Dec;213(2):533-41. doi: 10.1016/j.jmr.2011.09.021.
2
13C MRS studies of neuroenergetics and neurotransmitter cycling in humans.
NMR Biomed. 2011 Oct;24(8):943-57. doi: 10.1002/nbm.1772. Epub 2011 Aug 31.
3
ATP production rate via creatine kinase or ATP synthase in vivo: a novel superfast magnetization saturation transfer method.
Circ Res. 2011 Mar 18;108(6):653-63. doi: 10.1161/CIRCRESAHA.110.231456. Epub 2011 Feb 3.
4
Regional aerobic glycolysis in the human brain.
Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17757-62. doi: 10.1073/pnas.1010459107. Epub 2010 Sep 13.
5
Altered brain mitochondrial metabolism in healthy aging as assessed by in vivo magnetic resonance spectroscopy.
J Cereb Blood Flow Metab. 2010 Jan;30(1):211-21. doi: 10.1038/jcbfm.2009.197. Epub 2009 Sep 30.
6
Multimodal neuroimaging provides a highly consistent picture of energy metabolism, validating 31P MRS for measuring brain ATP synthesis.
Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3988-93. doi: 10.1073/pnas.0806516106. Epub 2009 Feb 20.
8
Advanced In Vivo Heteronuclear MRS Approaches for Studying Brain Bioenergetics Driven by Mitochondria.
Methods Mol Biol. 2009;489:317-57. doi: 10.1007/978-1-59745-543-5_15.
9
Tightly coupled brain activity and cerebral ATP metabolic rate.
Proc Natl Acad Sci U S A. 2008 Apr 29;105(17):6409-14. doi: 10.1073/pnas.0710766105. Epub 2008 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验