Berg H C, Turner L
Rowland Institute for Science, Cambridge, Massachusetts 02142.
Biophys J. 1990 Oct;58(4):919-30. doi: 10.1016/S0006-3495(90)82436-X.
Random and directed motility of bacterial populations were assayed by monitoring the flux of bacteria through a microchannel plate (a porous glass plate comprising a fused array of capillary tubes) separating two identical stirred chambers. Cells, washed free of growth medium by a new filtration method, were added to one chamber at a low density. Their number in the other chamber was determined from the amount of light scattered from a beam of a laser diode and recorded on a strip chart. Diffusion coefficients were computed from fluxes observed in the absence of chemical gradients, and chemotaxis drift velocities were computed from fluxes observed in their presence. Cells migrated through tubes of diam 10 microns more rapidly than through tubes of diam 50 microns, suggesting that the straight segments of their tracks were aligned with the axes of the smaller tubes. Mutants that are motile but nonchemotactic could be selected because they move through the microchannel plate in the face of an adverse gradient. Weak chemotactic responses were assessed from ratios of fluxes observed in paired experiments in which the sign of the gradient of attractant was reversed. Studies were made of wild-type Escherichia coli and mutants that are nonmotile, tumblely, smooth-swimming, aspartate-blind, or defective in methylation and demethylation. Chemotaxis drift velocities for the latter mutants (cheRcheB) were quite small.
通过监测细菌通过微通道板(一种由毛细管融合阵列组成的多孔玻璃板)的通量来测定细菌群体的随机和定向运动,该微通道板分隔两个相同的搅拌室。通过一种新的过滤方法将细胞从生长培养基中洗净后,以低密度添加到一个室中。另一个室中细胞的数量由激光二极管光束散射的光量确定,并记录在带状图表上。扩散系数由在没有化学梯度时观察到的通量计算得出,趋化漂移速度由在有化学梯度时观察到的通量计算得出。细胞通过直径10微米的管子比通过直径50微米的管子迁移得更快,这表明它们轨迹的直线段与较小管子的轴线对齐。可以选择有运动能力但无趋化性的突变体,因为它们在不利梯度下仍能通过微通道板。从配对实验中观察到的通量比值评估微弱的趋化反应,在这些实验中引诱剂梯度的符号被反转。对野生型大肠杆菌以及无运动能力、翻滚、平滑游动、对天冬氨酸无反应或在甲基化和去甲基化方面有缺陷的突变体进行了研究。后一种突变体(cheRcheB)的趋化漂移速度相当小。