Hallatschek Oskar, Datta Sujit S, Drescher Knut, Dunkel Jörn, Elgeti Jens, Waclaw Bartek, Wingreen Ned S
Departments of Physics and Integrative Biology, University of California, Berkeley, CA US.
Peter Debye Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany.
Nat Rev Phys. 2023 May 31:1-13. doi: 10.1038/s42254-023-00593-0.
The fascinating patterns of collective motion created by autonomously driven particles have fuelled active-matter research for over two decades. So far, theoretical active-matter research has often focused on systems with a fixed number of particles. This constraint imposes strict limitations on what behaviours can and cannot emerge. However, a hallmark of life is the breaking of local cell number conservation by replication and death. Birth and death processes must be taken into account, for example, to predict the growth and evolution of a microbial biofilm, the expansion of a tumour, or the development from a fertilized egg into an embryo and beyond. In this Perspective, we argue that unique features emerge in these systems because proliferation represents a distinct form of activity: not only do the proliferating entities consume and dissipate energy, they also inject biomass and degrees of freedom capable of further self-proliferation, leading to myriad dynamic scenarios. Despite this complexity, a growing number of studies document common collective phenomena in various proliferating soft-matter systems. This generality leads us to propose proliferation as another direction of active-matter physics, worthy of a dedicated search for new dynamical universality classes. Conceptual challenges abound, from identifying control parameters and understanding large fluctuations and nonlinear feedback mechanisms to exploring the dynamics and limits of information flow in self-replicating systems. We believe that, by extending the rich conceptual framework developed for conventional active matter to proliferating active matter, researchers can have a profound impact on quantitative biology and reveal fascinating emergent physics along the way.
由自主驱动的粒子所产生的迷人集体运动模式,在过去二十多年里推动了活性物质研究。到目前为止,理论活性物质研究常常聚焦于粒子数量固定的系统。这种限制对可能出现和不可能出现的行为施加了严格的限制。然而,生命的一个标志是通过复制和死亡打破局部细胞数量守恒。例如,为了预测微生物生物膜的生长和演化、肿瘤的扩张,或者从受精卵发育成胚胎及之后的过程,必须考虑出生和死亡过程。在这篇视角文章中,我们认为这些系统中会出现独特的特征,因为增殖代表了一种独特的活性形式:不仅增殖实体消耗和耗散能量,它们还注入能够进一步自我增殖的生物量和自由度,从而导致无数种动态情形。尽管存在这种复杂性,但越来越多的研究记录了各种增殖软物质系统中常见的集体现象。这种普遍性促使我们提出将增殖作为活性物质物理学的另一个方向,值得专门去寻找新的动力学普适类。概念上的挑战比比皆是,从确定控制参数、理解大的涨落和非线性反馈机制,到探索自我复制系统中信息流的动力学和极限。我们相信,通过将为传统活性物质所建立的丰富概念框架扩展到增殖活性物质,研究人员能够对定量生物学产生深远影响,并在此过程中揭示迷人的涌现物理学。