Optoelectronics Laboratory, Politecnico di Bari, Via E. Orabona 6, 70125 Bari, Italy.
CNR NANOTEC-Institute of Nanotechnology, Via per Monteroni, 73100 Lecce, Italy.
Int J Mol Sci. 2023 Apr 11;24(8):7077. doi: 10.3390/ijms24087077.
According to the World Health Organization (WHO) forecasts, Antimicrobial Resistance (AMR) will be the leading cause of death worldwide in the next decades. To prevent this phenomenon, rapid Antimicrobial Susceptibility Testing (AST) techniques are required to drive the selection of the most suitable antibiotic and its dosage. In this context, we propose an on-chip platform, based on a micromixer and a microfluidic channel, combined with a pattern of engineered electrodes to exploit the di-electrophoresis (DEP) effect. The role of the micromixer is to ensure the proper interaction of the antibiotic with the bacteria over a long time (≈1 h), and the DEP-based microfluidic channel enables the efficient sorting of live from dead bacteria. A sorting efficiency of more than 98%, with low power consumption ( = 1 V) and time response of 5 s, within a chip footprint of ≈86 mm, has been calculated, which makes the proposed system very attractive and innovative for efficient and rapid monitoring of the antimicrobial susceptibility at the single-bacterium level in next-generation medicine.
根据世界卫生组织(WHO)的预测,在未来几十年中,抗菌药物耐药性(AMR)将成为全球主要的死亡原因。为了防止这种现象,需要快速的抗菌药物敏感性测试(AST)技术来驱动最合适的抗生素及其剂量的选择。在这种情况下,我们提出了一种基于微混合器和微流道的芯片平台,结合了工程化电极图案,以利用电介质电泳(DEP)效应。微混合器的作用是确保抗生素与细菌长时间(≈1 小时)充分相互作用,而基于 DEP 的微流道则可以有效地对活细菌和死细菌进行分类。该系统的计算效率超过 98%,功耗低(=1V),响应时间为 5s,芯片占地面积约为 86mm²,这使得该系统在下一代医学中对单个细菌水平的抗菌药物敏感性进行高效快速监测具有很大的吸引力和创新性。