Suppr超能文献

迈向将 3D 组织病理学常规用作研究工具。

Toward routine use of 3D histopathology as a research tool.

机构信息

Department of Pathology and Tumor Biology, Leeds Institute of Molecular Medicine, Leeds, United Kingdom.

出版信息

Am J Pathol. 2012 May;180(5):1835-42. doi: 10.1016/j.ajpath.2012.01.033. Epub 2012 Apr 9.

Abstract

Three-dimensional (3D) reconstruction and examination of tissue at microscopic resolution have significant potential to enhance the study of both normal and disease processes, particularly those involving structural changes or those in which the spatial relationship of disease features is important. Although other methods exist for studying tissue in 3D, using conventional histopathological features has significant advantages because it allows for conventional histopathological staining and interpretation techniques. Until now, its use has not been routine in research because of the technical difficulty in constructing 3D tissue models. We describe a novel system for 3D histological reconstruction, integrating whole-slide imaging (virtual slides), image serving, registration, and visualization into one user-friendly package. It produces high-resolution 3D reconstructions with minimal user interaction and can be used in a histopathological laboratory without input from computing specialists. It uses a novel method for slice-to-slice image registration using automatic registration algorithms custom designed for both virtual slides and histopathological images. This system has been applied to >300 separate 3D volumes from eight different tissue types, using a total of 5500 virtual slides comprising 1.45 TB of primary image data. Qualitative and quantitative metrics for the accuracy of 3D reconstruction are provided, with measured registration accuracy approaching 120 μm for a 1-cm piece of tissue. Both 3D tissue volumes and generated 3D models are presented for four demonstrator cases.

摘要

三维(3D)重建和微观分辨率下的组织检查具有显著的潜力,可以增强对正常和疾病过程的研究,特别是那些涉及结构变化或疾病特征的空间关系很重要的过程。尽管存在其他用于研究 3D 组织的方法,但使用常规组织病理学特征具有显著的优势,因为它允许使用常规组织病理学染色和解释技术。到目前为止,由于构建 3D 组织模型的技术难度,其在研究中的应用并不常见。我们描述了一种用于 3D 组织学重建的新型系统,将全切片成像(虚拟切片)、图像服务、注册和可视化集成到一个用户友好的包中。它可以产生高分辨率的 3D 重建,只需最少的用户交互,并且可以在没有计算专家输入的情况下在组织病理学实验室中使用。它使用一种新颖的切片到切片图像注册方法,使用专门为虚拟幻灯片和组织病理学图像设计的自动注册算法。该系统已经应用于来自八个不同组织类型的 300 多个独立 3D 体积,总共使用了 5500 个虚拟幻灯片,包含 1.45TB 的原始图像数据。提供了 3D 重建准确性的定性和定量指标,对于 1 厘米组织的测量注册准确性接近 120μm。为四个演示案例呈现了 3D 组织体积和生成的 3D 模型。

相似文献

1
Toward routine use of 3D histopathology as a research tool.迈向将 3D 组织病理学常规用作研究工具。
Am J Pathol. 2012 May;180(5):1835-42. doi: 10.1016/j.ajpath.2012.01.033. Epub 2012 Apr 9.
7
Geometry processing of conventionally produced mouse brain slice images.常规制作的小鼠脑切片图像的几何处理。
J Neurosci Methods. 2018 Aug 1;306:45-56. doi: 10.1016/j.jneumeth.2018.04.008. Epub 2018 Apr 22.

引用本文的文献

1
Generating 2.5D pathology for enhanced viewing and AI diagnosis.生成2.5D病理学图像以增强观察效果和人工智能诊断。
J Pathol Inform. 2025 Jul 18;18:100463. doi: 10.1016/j.jpi.2025.100463. eCollection 2025 Aug.
5
Machine learning methods for histopathological image analysis: Updates in 2024.用于组织病理学图像分析的机器学习方法:2024年的进展
Comput Struct Biotechnol J. 2024 Dec 30;27:383-400. doi: 10.1016/j.csbj.2024.12.033. eCollection 2025.
8
Analysis of 3D pathology samples using weakly supervised AI.使用弱监督 AI 分析 3D 病理样本。
Cell. 2024 May 9;187(10):2502-2520.e17. doi: 10.1016/j.cell.2024.03.035.

本文引用的文献

3
Digital pathology: current status and future perspectives.数字病理学:现状与未来展望。
Histopathology. 2012 Jul;61(1):1-9. doi: 10.1111/j.1365-2559.2011.03814.x. Epub 2011 Apr 11.
4
Automatically identifying and annotating mouse embryo gene expression patterns.自动识别和标注小鼠胚胎基因表达模式。
Bioinformatics. 2011 Apr 15;27(8):1101-7. doi: 10.1093/bioinformatics/btr105. Epub 2011 Feb 25.
5
Three-dimensional ultrasound imaging.三维超声成像。
Proc Inst Mech Eng H. 2010;224(2):193-223. doi: 10.1243/09544119JEIM586.
6
From spatial-data to 3D models of the developing human brain.从空间数据到发育中人类大脑的 3D 模型。
Methods. 2010 Feb;50(2):96-104. doi: 10.1016/j.ymeth.2009.09.006. Epub 2009 Oct 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验