NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK.
Science. 2012 May 11;336(6082):704-7. doi: 10.1126/science.1219010. Epub 2012 Apr 5.
Tunneling of electrons through a potential barrier is fundamental to chemical reactions, electronic transport in semiconductors and superconductors, magnetism, and devices such as terahertz oscillators. Whereas tunneling is typically controlled by electric fields, a completely different approach is to bind electrons into bosonic quasiparticles with a photonic component. Quasiparticles made of such light-matter microcavity polaritons have recently been demonstrated to Bose-condense into superfluids, whereas spatially separated Coulomb-bound electrons and holes possess strong dipole interactions. We use tunneling polaritons to connect these two realms, producing bosonic quasiparticles with static dipole moments. Our resulting three-state system yields dark polaritons analogous to those in atomic systems or optical waveguides, thereby offering new possibilities for electromagnetically induced transparency, room-temperature condensation, and adiabatic photon-to-electron transfer.
电子通过势垒的隧道效应是化学反应、半导体和超导体中的电子输运、磁性以及太赫兹振荡器等器件的基础。虽然隧道效应通常由电场控制,但一种完全不同的方法是将电子束缚在具有光子分量的玻色准粒子中。由这种光物质微腔极化激元组成的准粒子最近已经被证明可以凝聚成超流体,而空间分离的库仑束缚电子和空穴具有很强的偶极相互作用。我们使用隧道极化子将这两个领域连接起来,产生具有静态偶极矩的玻色准粒子。我们的三态系统产生的暗极化子类似于原子系统或光波导中的暗极化子,从而为电磁感应透明、室温凝聚和绝热光子到电子转移提供了新的可能性。