Materials Science and Techology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
Nat Commun. 2012 Apr 10;3:775. doi: 10.1038/ncomms1778.
Physical and structural origins of morphotropic phase boundaries (MPBs) in ferroics remain elusive despite decades of study. The leading competing theories employ either low-symmetry bridging phases or adaptive phases with nanoscale textures to describe different subsets of the macroscopic data, while the decisive atomic-scale information has so far been missing. Here we report direct atomically resolved mapping of polarization and structure order parameter fields in a Sm-doped BiFeO(3) system and their evolution as the system approaches a MPB. We further show that both the experimental phase diagram and the observed phase evolution can be explained by taking into account the flexoelectric interaction, which renders the effective domain wall energy negative, thus stabilizing modulated phases in the vicinity of the MPB. Our study highlights the importance of local order-parameter mapping at the atomic scale and establishes a hitherto unobserved physical origin of spatially modulated phases existing in the vicinity of the MPB.
尽管经过了几十年的研究,铁电体中形态转变(MPB)的物理和结构起源仍然难以捉摸。主导的竞争理论要么采用低对称性桥接相,要么采用具有纳米级纹理的自适应相来描述宏观数据的不同子集,而决定性的原子尺度信息迄今为止一直缺失。在这里,我们报告了在 Sm 掺杂 BiFeO(3) 系统中直接原子分辨的极化和结构序参量场的映射,以及它们在接近 MPB 时的演化。我们进一步表明,考虑到压电极化相互作用,实验相图和观察到的相演化都可以得到解释,该相互作用使得有效畴壁能为负,从而在 MPB 附近稳定了调制相。我们的研究强调了在原子尺度上进行局部序参量映射的重要性,并确定了在 MPB 附近存在的空间调制相的一种迄今未观察到的物理起源。