Suppr超能文献

基于本征正交分解框架的局部青光眼改变检测。

Localized glaucomatous change detection within the proper orthogonal decomposition framework.

机构信息

Hamilton Glaucoma Center, Department of Ophthalmology, University of California San Diego, LaJolla, California 92093, USA.

出版信息

Invest Ophthalmol Vis Sci. 2012 Jun 14;53(7):3615-28. doi: 10.1167/iovs.11-8847.

Abstract

PURPOSE

To detect localized glaucomatous structural changes using proper orthogonal decomposition (POD) framework with false-positive control that minimizes confirmatory follow-ups, and to compare the results to topographic change analysis (TCA).

METHODS

We included 167 participants (246 eyes) with ≥4 Heidelberg Retina Tomograph (HRT)-II exams from the Diagnostic Innovations in Glaucoma Study; 36 eyes progressed by stereo-photographs or visual fields. All other patient eyes (n = 210) were non-progressing. Specificities were evaluated using 21 normal eyes. Significance of change at each HRT superpixel between each follow-up and its nearest baseline (obtained using POD) was estimated using mixed-effects ANOVA. Locations with significant reduction in retinal height (red pixels) were determined using Bonferroni, Lehmann-Romano k-family-wise error rate (k-FWER), and Benjamini-Hochberg false discovery rate (FDR) type I error control procedures. Observed positive rate (OPR) in each follow-up was calculated as a ratio of number of red pixels within disk to disk size. Progression by POD was defined as one or more follow-ups with OPR greater than the anticipated false-positive rate. TCA was evaluated using the recently proposed liberal, moderate, and conservative progression criteria.

RESULTS

Sensitivity in progressors, specificity in normals, and specificity in non-progressors, respectively, were POD-Bonferroni = 100%, 0%, and 0%; POD k-FWER = 78%, 86%, and 43%; POD-FDR = 78%, 86%, and 43%; POD k-FWER with retinal height change ≥50 μm = 61%, 95%, and 60%; TCA-liberal = 86%, 62%, and 21%; TCA-moderate = 53%, 100%, and 70%; and TCA-conservative = 17%, 100%, and 84%.

CONCLUSIONS

With a stronger control of type I errors, k-FWER in POD framework minimized confirmatory follow-ups while providing diagnostic accuracy comparable to TCA. Thus, POD with k-FWER shows promise to reduce the number of confirmatory follow-ups required for clinical care and studies evaluating new glaucoma treatments. (ClinicalTrials.gov number, NCT00221897.).

摘要

目的

使用虚假阳性控制的适当正交分解(POD)框架检测局部青光眼结构变化,以尽量减少确认性随访,并将结果与地形变化分析(TCA)进行比较。

方法

我们纳入了来自诊断性青光眼创新研究的 167 名参与者(246 只眼),这些参与者进行了≥4 次海德堡视网膜断层扫描仪(HRT)-II 检查;36 只眼通过立体照片或视野进展。所有其他患者眼(n=210)无进展。使用 21 只正常眼评估特异性。使用混合效应方差分析估计每个 HRT 超像素在每次随访与其最近的基线(使用 POD 获得)之间的变化的显着性。使用 Bonferroni、Lehmann-Romano k 家族错误率(k-FWER)和 Benjamini-Hochberg 假发现率(FDR)I 型错误控制程序确定视网膜高度(红色像素)显著降低的位置。在每次随访中,观察阳性率(OPR)计算为盘内红色像素数与盘大小的比值。使用 POD 定义的进展是指一个或多个随访的 OPR 大于预期的假阳性率。使用最近提出的宽松、中度和保守进展标准评估 TCA。

结果

进展者的敏感性、正常者的特异性和非进展者的特异性分别为 POD-Bonferroni=100%、0%和 0%;POD k-FWER=78%、86%和 43%;POD-FDR=78%、86%和 43%;POD k-FWER 与视网膜高度变化≥50 μm=61%、95%和 60%;TCA-宽松=86%、62%和 21%;TCA-中度=53%、100%和 70%;TCA-保守=17%、100%和 84%。

结论

使用 POD 框架,k-FWER 可更好地控制 I 型错误,同时减少确认性随访,提供与 TCA 相当的诊断准确性。因此,POD 与 k-FWER 具有减少临床护理和评估新的青光眼治疗方法所需的确认性随访数量的潜力。(临床试验.gov 编号,NCT00221897。)

相似文献

1
Localized glaucomatous change detection within the proper orthogonal decomposition framework.
Invest Ophthalmol Vis Sci. 2012 Jun 14;53(7):3615-28. doi: 10.1167/iovs.11-8847.
3
Clinical evaluation of the proper orthogonal decomposition framework for detecting glaucomatous changes in human subjects.
Invest Ophthalmol Vis Sci. 2010 Jan;51(1):264-71. doi: 10.1167/iovs.08-2014. Epub 2009 Aug 6.
4
Performance of confocal scanning laser tomograph Topographic Change Analysis (TCA) for assessing glaucomatous progression.
Invest Ophthalmol Vis Sci. 2009 Feb;50(2):691-701. doi: 10.1167/iovs.08-2136. Epub 2008 Oct 3.
5
Determinants of agreement between the confocal scanning laser tomograph and standardized assessment of glaucomatous progression.
Ophthalmology. 2010 Oct;117(10):1953-9. doi: 10.1016/j.ophtha.2010.02.002. Epub 2010 Jun 16.
6
Clinicians agreement in establishing glaucomatous progression using the Heidelberg retina tomograph.
Ophthalmology. 2009 Jan;116(1):14-24. doi: 10.1016/j.ophtha.2008.08.030. Epub 2008 Nov 17.
8
Glaucomatous progression in series of stereoscopic photographs and Heidelberg retina tomograph images.
Arch Ophthalmol. 2010 May;128(5):560-8. doi: 10.1001/archophthalmol.2010.52.
10
Glaucoma follow-up by the Heidelberg retina tomograph--new graphical analysis of optic disc topography changes.
Graefes Arch Clin Exp Ophthalmol. 2006 Jun;244(6):654-62. doi: 10.1007/s00417-005-0107-3. Epub 2005 Oct 12.

引用本文的文献

1
Dense optic nerve head deformation estimated using CNN as a structural biomarker of glaucoma progression.
Eye (Lond). 2023 Dec;37(18):3819-3826. doi: 10.1038/s41433-023-02623-8. Epub 2023 Jun 17.
2
Structural Change Can Be Detected in Advanced-Glaucoma Eyes.
Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):OCT511-8. doi: 10.1167/iovs.15-18929.
4
Glaucoma progression detection using nonlocal Markov random field prior.
J Med Imaging (Bellingham). 2014 Oct;1(3):034504. doi: 10.1117/1.JMI.1.3.034504. Epub 2014 Dec 29.
5
Learning from healthy and stable eyes: A new approach for detection of glaucomatous progression.
Artif Intell Med. 2015 Jun;64(2):105-15. doi: 10.1016/j.artmed.2015.04.002. Epub 2015 Apr 23.
7
A unified framework for glaucoma progression detection using Heidelberg Retina Tomograph images.
Comput Med Imaging Graph. 2014 Jul;38(5):411-20. doi: 10.1016/j.compmedimag.2014.03.002. Epub 2014 Mar 13.

本文引用的文献

1
The African Descent and Glaucoma Evaluation Study (ADAGES): design and baseline data.
Arch Ophthalmol. 2009 Sep;127(9):1136-45. doi: 10.1001/archophthalmol.2009.187.
2
Clinical evaluation of the proper orthogonal decomposition framework for detecting glaucomatous changes in human subjects.
Invest Ophthalmol Vis Sci. 2010 Jan;51(1):264-71. doi: 10.1167/iovs.08-2014. Epub 2009 Aug 6.
3
Major genetic effects in glaucoma: commingling analysis of optic disc parameters in an older Australian population.
Invest Ophthalmol Vis Sci. 2009 Nov;50(11):5275-80. doi: 10.1167/iovs.08-3065. Epub 2009 May 20.
4
A framework for detecting glaucomatous progression in the optic nerve head of an eye using proper orthogonal decomposition.
IEEE Trans Inf Technol Biomed. 2009 Sep;13(5):781-93. doi: 10.1109/TITB.2009.2020158. Epub 2009 Apr 14.
5
Optic disc progression in glaucoma: comparison of confocal scanning laser tomography to optic disc photographs in a prospective study.
Invest Ophthalmol Vis Sci. 2009 Apr;50(4):1682-91. doi: 10.1167/iovs.08-2457. Epub 2008 Dec 5.
6
Performance of confocal scanning laser tomograph Topographic Change Analysis (TCA) for assessing glaucomatous progression.
Invest Ophthalmol Vis Sci. 2009 Feb;50(2):691-701. doi: 10.1167/iovs.08-2136. Epub 2008 Oct 3.
7
A new statistical approach for quantifying change in series of retinal and optic nerve head topography images.
Invest Ophthalmol Vis Sci. 2005 May;46(5):1659-67. doi: 10.1167/iovs.04-0953.
8
Controlling the familywise error rate in functional neuroimaging: a comparative review.
Stat Methods Med Res. 2003 Oct;12(5):419-46. doi: 10.1191/0962280203sm341ra.
9
Thresholding of statistical maps in functional neuroimaging using the false discovery rate.
Neuroimage. 2002 Apr;15(4):870-8. doi: 10.1006/nimg.2001.1037.
10
Nonparametric permutation tests for functional neuroimaging: a primer with examples.
Hum Brain Mapp. 2002 Jan;15(1):1-25. doi: 10.1002/hbm.1058.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验