Suppr超能文献

控制功能神经成像中的家族性错误率:比较性综述。

Controlling the familywise error rate in functional neuroimaging: a comparative review.

作者信息

Nichols Thomas, Hayasaka Satoru

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Stat Methods Med Res. 2003 Oct;12(5):419-46. doi: 10.1191/0962280203sm341ra.

Abstract

Functional neuroimaging data embodies a massive multiple testing problem, where 100,000 correlated test statistics must be assessed. The familywise error rate, the chance of any false positives is the standard measure of Type I errors in multiple testing. In this paper we review and evaluate three approaches to thresholding images of test statistics: Bonferroni, random field and the permutation test. Owing to recent developments, improved Bonferroni procedures, such as Hochberg's methods, are now applicable to dependent data. Continuous random field methods use the smoothness of the image to adapt to the severity of the multiple testing problem. Also, increased computing power has made both permutation and bootstrap methods applicable to functional neuroimaging. We evaluate these approaches on t images using simulations and a collection of real datasets. We find that Bonferroni-related tests offer little improvement over Bonferroni, while the permutation method offers substantial improvement over the random field method for low smoothness and low degrees of freedom. We also show the limitations of trying to find an equivalent number of independent tests for an image of correlated test statistics.

摘要

功能神经影像学数据存在大规模多重检验问题,其中必须评估100,000个相关的检验统计量。在多重检验中,族系错误率(即出现任何假阳性的概率)是I型错误的标准度量。在本文中,我们回顾并评估了三种对检验统计量图像进行阈值处理的方法:邦费罗尼法、随机场法和置换检验法。由于最近的发展,改进的邦费罗尼程序,如霍赫贝格方法,现在适用于相关数据。连续随机场方法利用图像的平滑性来适应多重检验问题的严重程度。此外,计算能力的提高使得置换法和自助法都适用于功能神经影像学。我们使用模拟和一组真实数据集对这些方法在t图像上进行评估。我们发现,与邦费罗尼相关的检验相比邦费罗尼法几乎没有改进,而对于低平滑度和低自由度的情况,置换法比随机场法有显著改进。我们还展示了试图为相关检验统计量的图像找到等效数量的独立检验的局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验