Suppr超能文献

一种使用海德堡视网膜断层扫描图像进行青光眼病情进展检测的统一框架。

A unified framework for glaucoma progression detection using Heidelberg Retina Tomograph images.

作者信息

Belghith Akram, Balasubramanian Madhusudhanan, Bowd Christopher, Weinreb Robert N, Zangwill Linda M

机构信息

Hamilton Glaucoma Center, University of California San Diego, La Jolla, CA, United States.

Hamilton Glaucoma Center, University of California San Diego, La Jolla, CA, United States; Department of Electrical & Computer Engineering, The University of Memphis, Memphis, TN, United States; Department of Biomedical Engineering, The University of Memphis, Memphis, TN, United States; Department of Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States.

出版信息

Comput Med Imaging Graph. 2014 Jul;38(5):411-20. doi: 10.1016/j.compmedimag.2014.03.002. Epub 2014 Mar 13.

Abstract

Glaucoma, the second leading cause of blindness worldwide, is an optic neuropathy characterized by distinctive changes in the optic nerve head (ONH) and visual field. The detection of glaucomatous progression is one of the most important and most challenging aspects of primary open angle glaucoma (OAG) management. In this context, ocular imaging equipment is increasingly sophisticated, providing quantitative tools to measure structural changes in ONH topography, an essential element in determining whether the disease is getting worse. In particular, the Heidelberg Retina Tomograph (HRT), a confocal scanning laser technology, has been commonly used to detect glaucoma and monitor its progression. In this paper, we present a new framework for detection of glaucomatous progression using HRT images. In contrast to previous works that do not integrate a priori knowledge available in the images, particularly the spatial pixel dependency in the change detection map, the Markov Random Field is proposed to handle such dependency. To the best of our knowledge, this is the first application of the Variational Expectation Maximization (VEM) algorithm for inferring topographic ONH changes in the glaucoma progression detection framework. Diagnostic performance of the proposed framework is compared to recently proposed methods of progression detection.

摘要

青光眼是全球第二大致盲原因,是一种以视神经乳头(ONH)和视野的独特变化为特征的视神经病变。青光眼进展的检测是原发性开角型青光眼(OAG)管理中最重要且最具挑战性的方面之一。在此背景下,眼部成像设备日益精密,提供了定量工具来测量ONH地形的结构变化,这是确定疾病是否恶化的关键要素。特别是,海德堡视网膜断层扫描仪(HRT),一种共焦扫描激光技术,已被广泛用于检测青光眼并监测其进展。在本文中,我们提出了一种使用HRT图像检测青光眼进展的新框架。与之前未整合图像中可用的先验知识,特别是变化检测图中的空间像素依赖性的工作不同,我们提出使用马尔可夫随机场来处理这种依赖性。据我们所知,这是变分期望最大化(VEM)算法在青光眼进展检测框架中用于推断ONH地形变化的首次应用。将所提出框架的诊断性能与最近提出的进展检测方法进行了比较。

相似文献

1
A unified framework for glaucoma progression detection using Heidelberg Retina Tomograph images.
Comput Med Imaging Graph. 2014 Jul;38(5):411-20. doi: 10.1016/j.compmedimag.2014.03.002. Epub 2014 Mar 13.
3
Glaucoma follow-up by the Heidelberg retina tomograph--new graphical analysis of optic disc topography changes.
Graefes Arch Clin Exp Ophthalmol. 2006 Jun;244(6):654-62. doi: 10.1007/s00417-005-0107-3. Epub 2005 Oct 12.
6
Factors affecting the variability of the Heidelberg Retina Tomograph III measurements in newly diagnosed glaucoma patients.
Arq Bras Oftalmol. 2010 Jul-Aug;73(4):354-7. doi: 10.1590/s0004-27492010000400011.
8
Glaucoma diagnostics.
Acta Ophthalmol. 2013 Feb;91 Thesis 1:1-32. doi: 10.1111/aos.12072.
9
Learning from healthy and stable eyes: A new approach for detection of glaucomatous progression.
Artif Intell Med. 2015 Jun;64(2):105-15. doi: 10.1016/j.artmed.2015.04.002. Epub 2015 Apr 23.
10

引用本文的文献

1
Advancing Glaucoma Care: Integrating Artificial Intelligence in Diagnosis, Management, and Progression Detection.
Bioengineering (Basel). 2024 Jan 26;11(2):122. doi: 10.3390/bioengineering11020122.
2
A Data Mining Framework for Glaucoma Decision Support Based on Optic Nerve Image Analysis Using Machine Learning Methods.
J Healthc Inform Res. 2018 Jun 20;2(4):370-401. doi: 10.1007/s41666-018-0028-7. eCollection 2018 Dec.
3
Macular Optical Coherence Tomography Imaging in Glaucoma.
J Ophthalmic Vis Res. 2021 Jul 29;16(3):478-489. doi: 10.18502/jovr.v16i3.9442. eCollection 2021 Jul-Sep.
4
Artificial Intelligence Algorithms to Diagnose Glaucoma and Detect Glaucoma Progression: Translation to Clinical Practice.
Transl Vis Sci Technol. 2020 Oct 15;9(2):55. doi: 10.1167/tvst.9.2.55. eCollection 2020 Oct.
5
Macular imaging with optical coherence tomography in glaucoma.
Surv Ophthalmol. 2020 Nov-Dec;65(6):597-638. doi: 10.1016/j.survophthal.2020.03.002. Epub 2020 Mar 19.
6
Dental hard tissue morphological segmentation with sparse representation-based classifier.
Med Biol Eng Comput. 2019 Aug;57(8):1629-1643. doi: 10.1007/s11517-019-01985-0. Epub 2019 May 8.
7
Glaucoma progression detection using nonlocal Markov random field prior.
J Med Imaging (Bellingham). 2014 Oct;1(3):034504. doi: 10.1117/1.JMI.1.3.034504. Epub 2014 Dec 29.

本文引用的文献

1
Localized glaucomatous change detection within the proper orthogonal decomposition framework.
Invest Ophthalmol Vis Sci. 2012 Jun 14;53(7):3615-28. doi: 10.1167/iovs.11-8847.
2
Variational Bayesian sparse kernel-based blind image deconvolution with Student's-t priors.
IEEE Trans Image Process. 2009 Apr;18(4):753-64. doi: 10.1109/TIP.2008.2011757.
3
Superresolution with compound Markov random fields via the variational EM algorithm.
Neural Netw. 2009 Sep;22(7):1025-34. doi: 10.1016/j.neunet.2008.12.005. Epub 2009 Jan 7.
4
Optic disc progression in glaucoma: comparison of confocal scanning laser tomography to optic disc photographs in a prospective study.
Invest Ophthalmol Vis Sci. 2009 Apr;50(4):1682-91. doi: 10.1167/iovs.08-2457. Epub 2008 Dec 5.
5
The mean field theory in EM procedures for blind Markov random field image restoration.
IEEE Trans Image Process. 1993;2(1):27-40. doi: 10.1109/83.210863.
6
Illumination compensation and normalization for robust face recognition using discrete cosine transform in logarithm domain.
IEEE Trans Syst Man Cybern B Cybern. 2006 Apr;36(2):458-66. doi: 10.1109/tsmcb.2005.857353.
7
A comparison of algorithms for inference and learning in probabilistic graphical models.
IEEE Trans Pattern Anal Mach Intell. 2005 Sep;27(9):1392-416. doi: 10.1109/TPAMI.2005.169.
9
Optical coherence tomography to detect and manage retinal disease and glaucoma.
Am J Ophthalmol. 2004 Jan;137(1):156-69. doi: 10.1016/s0002-9394(03)00792-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验