Suppr超能文献

在小鼠运动皮层的皮质脊髓-皮质纹状体微电路中,层次连接和连接特异性动力学。

Hierarchical connectivity and connection-specific dynamics in the corticospinal-corticostriatal microcircuit in mouse motor cortex.

机构信息

Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.

出版信息

J Neurosci. 2012 Apr 4;32(14):4992-5001. doi: 10.1523/JNEUROSCI.4759-11.2012.

Abstract

The generation of purposive movement by mammals involves coordinated activity in the corticospinal and corticostriatal systems, which are involved in different aspects of motor control. In the motor cortex, corticospinal and corticostriatal neurons are closely intermingled, raising the question of whether and how information flows intracortically within and across these two channels. To explore this, we developed an optogenetic technique based on retrograde transfection of neurons with deletion-mutant rabies virus encoding channelrhodopsin-2, and used this in conjunction with retrograde anatomical labeling to stimulate and record from identified projection neurons in mouse motor cortex. We also used paired recordings to measure unitary connections. Both corticospinal and callosally projecting corticostriatal neurons in layer 5B formed within-class (recurrent) connections, with higher connection probability among corticostriatal than among corticospinal neurons. In contrast, across-class connectivity was extraordinarily asymmetric, essentially unidirectional from corticostriatal to corticospinal. Corticostriatal neurons in layer 5A and corticocortical neurons (callosal projection neurons similar to corticostriatal neurons) similarly received a paucity of corticospinal input. Connections involving presynaptic corticostriatal neurons had greater synaptic depression, and those involving postsynaptic corticospinal neurons had faster decaying EPSPs. Consequently, the three connections displayed a diversity of dynamic properties reflecting the different combinations of presynaptic and postsynaptic projection neurons. Collectively, these findings delineate a four-way specialized excitatory microcircuit formed by corticospinal and corticostriatal neurons. The "rectifying" corticostriatal-to-corticospinal connectivity implies a hierarchical organization and functional compartmentalization of corticospinal activity via unidirectional signaling from higher-order (corticostriatal) to lower-order (corticospinal) output neurons.

摘要

哺乳动物有目的运动的产生涉及皮质脊髓和皮质纹状体系统的协调活动,这些系统涉及运动控制的不同方面。在运动皮层中,皮质脊髓和皮质纹状体神经元紧密交织在一起,这就提出了一个问题,即信息是否以及如何在这两个通道内和跨通道进行皮质内传递。为了探索这一点,我们开发了一种基于逆行转染神经元的光遗传学技术,使用缺失突变的狂犬病毒来编码通道视紫红质-2,然后结合逆行解剖学标记,刺激和记录小鼠运动皮层中已识别的投射神经元。我们还使用成对记录来测量单元连接。5B 层中的皮质脊髓和胼胝体投射的皮质纹状体神经元形成了同类型(递归)连接,皮质纹状体神经元之间的连接概率高于皮质脊髓神经元之间的连接概率。相比之下,跨类型连接具有极高的不对称性,基本上是从皮质纹状体到皮质脊髓的单向连接。5A 层中的皮质纹状体神经元和皮质皮质神经元(类似于皮质纹状体神经元的胼胝体投射神经元)同样接收很少的皮质脊髓输入。涉及到突触前皮质纹状体神经元的连接具有更大的突触抑制作用,而涉及到突触后皮质脊髓神经元的连接具有更快衰减的 EPSP。因此,这三种连接具有不同的动态特性,反映了不同的突触前和突触后投射神经元的组合。总的来说,这些发现描绘了由皮质脊髓和皮质纹状体神经元形成的四向专门兴奋性微电路。“整流”的皮质纹状体到皮质脊髓的连接暗示了皮质脊髓活动的分层组织和功能分区,通过从高级(皮质纹状体)到低级(皮质脊髓)输出神经元的单向信号传递。

相似文献

3
Sublayer-specific microcircuits of corticospinal and corticostriatal neurons in motor cortex.
Nat Neurosci. 2010 Jun;13(6):739-44. doi: 10.1038/nn.2538. Epub 2010 May 2.
4
A Corticocortical Circuit Directly Links Retrosplenial Cortex to M2 in the Mouse.
J Neurosci. 2016 Sep 7;36(36):9365-74. doi: 10.1523/JNEUROSCI.1099-16.2016.
5
Laminarly orthogonal excitation of fast-spiking and low-threshold-spiking interneurons in mouse motor cortex.
J Neurosci. 2012 May 16;32(20):7021-33. doi: 10.1523/JNEUROSCI.0011-12.2012.
6
Intrinsic electrophysiology of mouse corticospinal neurons: a class-specific triad of spike-related properties.
Cereb Cortex. 2013 Aug;23(8):1965-77. doi: 10.1093/cercor/bhs184. Epub 2012 Jul 3.
7
Highly differentiated projection-specific cortical subnetworks.
J Neurosci. 2011 Jul 13;31(28):10380-91. doi: 10.1523/JNEUROSCI.0772-11.2011.
8
Input- and Output-Specific Regulation of Serial Order Performance by Corticostriatal Circuits.
Neuron. 2015 Oct 21;88(2):345-56. doi: 10.1016/j.neuron.2015.09.035.
9
Local connections of excitatory neurons in motor-associated cortical areas of the rat.
Front Neural Circuits. 2013 May 28;7:75. doi: 10.3389/fncir.2013.00075. eCollection 2013.

引用本文的文献

1
Enhanced beta power emerges from simulated parkinsonian primary motor cortex.
NPJ Parkinsons Dis. 2025 Aug 5;11(1):230. doi: 10.1038/s41531-025-01070-4.
3
Reactivated thalamocortical plasticity alters neural activity in sensory-motor cortex during post-critical period.
Prog Neurobiol. 2025 Apr;247:102735. doi: 10.1016/j.pneurobio.2025.102735. Epub 2025 Feb 25.
4
Self-organized and self-sustained ensemble activity patterns in simulation of mouse primary motor cortex.
bioRxiv. 2025 Jan 14:2025.01.13.632866. doi: 10.1101/2025.01.13.632866.
6
Variation and convergence in the morpho-functional properties of the mammalian neocortex.
Front Syst Neurosci. 2024 Jun 20;18:1413780. doi: 10.3389/fnsys.2024.1413780. eCollection 2024.
8
Cholinergic Activation of Corticofugal Circuits in the Adult Mouse Prefrontal Cortex.
J Neurosci. 2024 Jan 17;44(3):e1388232023. doi: 10.1523/JNEUROSCI.1388-23.2023.
9
Intranasal neuropeptide Y1 receptor antagonism improves motor deficits in symptomatic SOD1 ALS mice.
Ann Clin Transl Neurol. 2023 Nov;10(11):1985-1999. doi: 10.1002/acn3.51885. Epub 2023 Aug 29.
10
Synaptic zinc potentiates AMPA receptor function in mouse auditory cortex.
Cell Rep. 2023 Aug 29;42(8):112932. doi: 10.1016/j.celrep.2023.112932. Epub 2023 Aug 15.

本文引用的文献

1
Dissociating motor cortex from the motor.
J Physiol. 2011 Dec 1;589(Pt 23):5613-24. doi: 10.1113/jphysiol.2011.215814. Epub 2011 Oct 17.
2
Ephus: multipurpose data acquisition software for neuroscience experiments.
Front Neural Circuits. 2010 Aug 26;4:100. doi: 10.3389/fncir.2010.00100. eCollection 2010.
5
Highly differentiated projection-specific cortical subnetworks.
J Neurosci. 2011 Jul 13;31(28):10380-91. doi: 10.1523/JNEUROSCI.0772-11.2011.
6
What drives corticospinal output?
F1000 Biol Rep. 2010 Jul 14;2:51. doi: 10.3410/B2-51.
7
Projection-specific neuromodulation of medial prefrontal cortex neurons.
J Neurosci. 2010 Dec 15;30(50):16922-37. doi: 10.1523/JNEUROSCI.3644-10.2010.
8
Development, specification, and diversity of callosal projection neurons.
Trends Neurosci. 2011 Jan;34(1):41-50. doi: 10.1016/j.tins.2010.10.002. Epub 2010 Dec 2.
9
Corticostriatal projection neurons - dichotomous types and dichotomous functions.
Front Neuroanat. 2010 Oct 25;4:142. doi: 10.3389/fnana.2010.00142. eCollection 2010.
10
Sublayer-specific microcircuits of corticospinal and corticostriatal neurons in motor cortex.
Nat Neurosci. 2010 Jun;13(6):739-44. doi: 10.1038/nn.2538. Epub 2010 May 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验