Suppr超能文献

阿根廷本土苜蓿中华根瘤菌分离株的细菌自动聚集和生物膜形成之间存在正相关关系。

A positive correlation between bacterial autoaggregation and biofilm formation in native Sinorhizobium meliloti isolates from Argentina.

机构信息

Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.

出版信息

Appl Environ Microbiol. 2012 Jun;78(12):4092-101. doi: 10.1128/AEM.07826-11. Epub 2012 Apr 6.

Abstract

Sinorhizobium meliloti is a symbiotic nitrogen-fixing bacterium that elicits nodule formation on roots of alfalfa plants. S. meliloti produces two exopolysaccharides (EPSs), termed EPS I and EPS II, that are both able to promote symbiosis. EPS I and EPS II are secreted in two major fractions that reflect differing degrees of subunit polymerization, designated high- and low-molecular-weight fractions. We reported previously that EPSs are crucial for autoaggregation and biofilm formation in S. meliloti reference strains and isogenic mutants. However, the previous observations were obtained by use of "domesticated" laboratory strains, with mutations resulting from successive passages under unnatural conditions, as has been documented for reference strain Rm1021. In the present study, we analyzed the autoaggregation and biofilm formation abilities of native S. meliloti strains isolated from root nodules of alfalfa plants grown in four regions of Argentina. 16S rRNA gene analysis of all the native isolates revealed a high degree of identity with reference S. meliloti strains. PCR analysis of the expR gene of all the isolates showed that, as in the case of reference strain Rm8530, this gene is not interrupted by an insertion sequence (IS) element. A positive correlation was found between autoaggregation and biofilm formation abilities in these rhizobia, indicating that both processes depend on the same physical adhesive forces. Extracellular complementation experiments using mutants of the native strains showed that autoaggregation was dependent on EPS II production. Our results indicate that a functional EPS II synthetic pathway and its proper regulation are essential for cell-cell interactions and surface attachment of S. meliloti.

摘要

苜蓿中华根瘤菌是一种共生固氮细菌,能在紫花苜蓿植物的根部引发根瘤的形成。苜蓿中华根瘤菌产生两种胞外多糖(EPS),分别称为 EPS I 和 EPS II,这两种多糖都能促进共生。EPS I 和 EPS II 以两种主要的分泌形式存在,这两种形式反映了亚基聚合程度的不同,分别称为高分子量和低分子量部分。我们之前报道过 EPS 对于苜蓿中华根瘤菌参考菌株和同源突变株的自动聚集和生物膜形成是至关重要的。然而,之前的观察结果是使用“驯化”的实验室菌株获得的,这些菌株由于在非自然条件下连续传代而产生突变,正如参考菌株 Rm1021 所记录的那样。在本研究中,我们分析了从阿根廷四个地区生长的紫花苜蓿植物根瘤中分离的天然苜蓿中华根瘤菌菌株的自动聚集和生物膜形成能力。所有天然分离株的 16S rRNA 基因分析显示与参考苜蓿中华根瘤菌菌株具有高度的同源性。对所有分离株的 expR 基因的 PCR 分析表明,与参考菌株 Rm8530 一样,该基因没有被插入序列(IS)元件中断。在这些根瘤菌中,自动聚集和生物膜形成能力之间存在正相关关系,这表明这两个过程都依赖于相同的物理粘附力。使用天然菌株的突变体进行的细胞外互补实验表明,自动聚集依赖于 EPS II 的产生。我们的结果表明,功能性 EPS II 合成途径及其适当的调节对于苜蓿中华根瘤菌的细胞间相互作用和表面附着是必不可少的。

相似文献

1
A positive correlation between bacterial autoaggregation and biofilm formation in native Sinorhizobium meliloti isolates from Argentina.
Appl Environ Microbiol. 2012 Jun;78(12):4092-101. doi: 10.1128/AEM.07826-11. Epub 2012 Apr 6.
2
Exopolysaccharide II Is Relevant for the Survival of under Water Deficiency and Salinity Stress.
Molecules. 2020 Oct 22;25(21):4876. doi: 10.3390/molecules25214876.
3
Cell Autoaggregation, Biofilm Formation, and Plant Attachment in a Sinorhizobium meliloti lpsB Mutant.
Mol Plant Microbe Interact. 2018 Oct;31(10):1075-1082. doi: 10.1094/MPMI-01-18-0004-R. Epub 2018 Aug 20.
4
EPS II-dependent autoaggregation of Sinorhizobium meliloti planktonic cells.
Curr Microbiol. 2010 Nov;61(5):465-70. doi: 10.1007/s00284-010-9639-9. Epub 2010 Apr 11.
6
Novel Genes and Regulators That Influence Production of Cell Surface Exopolysaccharides in Sinorhizobium meliloti.
J Bacteriol. 2018 Jan 10;200(3). doi: 10.1128/JB.00501-17. Print 2018 Feb 1.
8
Coaggregative interactions between rhizobacteria are promoted by exopolysaccharides from Sinorhizobium meliloti.
J Basic Microbiol. 2023 Jun;63(6):646-657. doi: 10.1002/jobm.202200552. Epub 2023 Feb 3.
9
10
Exopolysaccharide production in Ensifer meliloti laboratory and native strains and their effects on alfalfa inoculation.
Arch Microbiol. 2020 Mar;202(2):391-398. doi: 10.1007/s00203-019-01756-3. Epub 2019 Nov 3.

引用本文的文献

1
Functional Profiling of and Strains: An In Vitro Study on Probiotic and Postbiotic Properties.
Microorganisms. 2025 Jun 10;13(6):1348. doi: 10.3390/microorganisms13061348.
2
ARTP mutagenesis for genome-wide identification of genes important for biofilm regulation in spoilage bacterium PF08.
Appl Environ Microbiol. 2025 Jun 18;91(6):e0021825. doi: 10.1128/aem.00218-25. Epub 2025 May 7.
4
Examining the impact of probiotic 6MMI on inhibiting biofilm formation, adhesion, and virulence gene expression in ATCC 19115.
Biofilm. 2025 Jan 17;9:100255. doi: 10.1016/j.bioflm.2025.100255. eCollection 2025 Jun.
5
Isolation and Characterization of Probiotic Bacteria from Traditional Foods.
Appl Biochem Biotechnol. 2025 Apr;197(4):2197-2215. doi: 10.1007/s12010-024-05125-9. Epub 2024 Dec 23.
6
Anticariogenic activity of marine brown algae and its active components towards .
Front Cell Infect Microbiol. 2024 Nov 25;14:1458825. doi: 10.3389/fcimb.2024.1458825. eCollection 2024.
8
Marine bacteria spp. require UDP-glucose-4-epimerase for aggregation and production of sticky exopolymer.
mBio. 2024 Aug 14;15(8):e0003824. doi: 10.1128/mbio.00038-24. Epub 2024 Jul 3.
9
Investigating the antimicrobial and anti-inflammatory effects of and spp. on cariogenic and periodontitis pathogens.
Front Microbiol. 2024 May 30;15:1383959. doi: 10.3389/fmicb.2024.1383959. eCollection 2024.

本文引用的文献

1
Environmental signals and regulatory pathways that influence exopolysaccharide production in rhizobia.
Int J Mol Sci. 2011;12(11):7898-933. doi: 10.3390/ijms12117898. Epub 2011 Nov 15.
2
The biodiversity of beneficial microbe-host mutualism: the case of rhizobia.
Res Microbiol. 2010 Jul-Aug;161(6):453-63. doi: 10.1016/j.resmic.2010.05.005. Epub 2010 Jun 1.
3
EPS II-dependent autoaggregation of Sinorhizobium meliloti planktonic cells.
Curr Microbiol. 2010 Nov;61(5):465-70. doi: 10.1007/s00284-010-9639-9. Epub 2010 Apr 11.
4
An integrated view of biofilm formation in rhizobia.
FEMS Microbiol Lett. 2010 Mar;304(1):1-11. doi: 10.1111/j.1574-6968.2009.01840.x. Epub 2009 Oct 30.
5
Analysis of the mucR gene regulating biosynthesis of exopolysaccharides: implications for biofilm formation in Sinorhizobium meliloti Rm1021.
FEMS Microbiol Lett. 2010 Jan;302(1):15-21. doi: 10.1111/j.1574-6968.2009.01826.x. Epub 2009 Oct 22.
9
Glucomannan-mediated attachment of Rhizobium leguminosarum to pea root hairs is required for competitive nodule infection.
J Bacteriol. 2008 Jul;190(13):4706-15. doi: 10.1128/JB.01694-07. Epub 2008 Apr 25.
10
Rhizobium common nod genes are required for biofilm formation.
Mol Microbiol. 2008 Feb;67(3):504-15. doi: 10.1111/j.1365-2958.2007.06064.x. Epub 2007 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验