Suppr超能文献

苜蓿中华根瘤菌 lpsB 突变株的细胞自动聚集、生物膜形成和植物附着。

Cell Autoaggregation, Biofilm Formation, and Plant Attachment in a Sinorhizobium meliloti lpsB Mutant.

机构信息

1 Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.

2 Fundación Instituto Leloir and IIBBA CONICET, Buenos Aires, Argentina.

出版信息

Mol Plant Microbe Interact. 2018 Oct;31(10):1075-1082. doi: 10.1094/MPMI-01-18-0004-R. Epub 2018 Aug 20.

Abstract

Bacterial surface molecules are crucial for the establishment of a successful rhizobia-legume symbiosis, and, in most bacteria, are also critical for adherence properties, surface colonization, and as a barrier for defense. Rhizobial mutants defective in the production of exopolysaccharides (EPSs), lipopolysaccharides (LPSs), or capsular polysaccharides are usually affected in symbiosis with their plant hosts. In the present study, we evaluated the role of the combined effects of LPS and EPS II in cell-to-cell and cell-to-surface interactions in Sinorhizobium meliloti by studying planktonic cell autoaggregation, biofilm formation, and symbiosis with the host plant Medicago sativa. The lpsB mutant, which has a defective core portion of LPS, exhibited a reduction in biofilm formation on abiotic surfaces as well as altered biofilm architecture compared with the wild-type Rm8530 strain. Atomic force microscopy and confocal laser microscopy revealed an increase in polar cell-to-cell interactions in the lpsB mutant, which might account for the biofilm deficiency. However, a certain level of biofilm development was observed in the lpsB strain compared with the EPS II-defective mutant strains. Autoaggregation experiments carried out with LPS and EPS mutant strains showed that both polysaccharides have an impact on the cell-to-cell adhesive interactions of planktonic bacteria. Although the lpsB mutation and the loss of EPS II production strongly stimulated early attachment to alfalfa roots, the number of nodules induced in M. sativa was not increased. Taken together, this work demonstrates that S. meliloti interactions with biotic and abiotic surfaces depend on the interplay between LPS and EPS II.

摘要

细菌表面分子对于成功建立根瘤菌-豆科植物共生关系至关重要,而且在大多数细菌中,对于粘附特性、表面定植和作为防御屏障也至关重要。产生胞外多糖(EPS)、脂多糖(LPS)或荚膜多糖缺陷的根瘤菌突变体通常在与植物宿主共生时受到影响。在本研究中,我们通过研究浮游细胞自动聚集、生物膜形成以及与宿主植物紫花苜蓿的共生关系,评估了 LPS 和 EPS II 的联合效应对根瘤菌属 meliloti 细胞间和细胞与表面相互作用的影响。lpsB 突变体,其 LPS 的核心部分有缺陷,与野生型 Rm8530 菌株相比,在非生物表面的生物膜形成以及生物膜结构方面都有所减少。原子力显微镜和共聚焦激光显微镜显示,lpsB 突变体中极性细胞间相互作用增加,这可能是生物膜缺陷的原因。然而,与 EPS II 缺陷突变菌株相比,lpsB 菌株中观察到一定水平的生物膜发育。用 LPS 和 EPS 突变菌株进行的自动聚集实验表明,两种多糖都对浮游细菌的细胞间粘附相互作用有影响。尽管 lpsB 突变和 EPS II 产生的丧失强烈刺激了苜蓿根的早期附着,但在 M. sativa 中诱导的根瘤数量并没有增加。综上所述,这项工作表明,根瘤菌属 meliloti 与生物和非生物表面的相互作用取决于 LPS 和 EPS II 之间的相互作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验