1 Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.
2 Fundación Instituto Leloir and IIBBA CONICET, Buenos Aires, Argentina.
Mol Plant Microbe Interact. 2018 Oct;31(10):1075-1082. doi: 10.1094/MPMI-01-18-0004-R. Epub 2018 Aug 20.
Bacterial surface molecules are crucial for the establishment of a successful rhizobia-legume symbiosis, and, in most bacteria, are also critical for adherence properties, surface colonization, and as a barrier for defense. Rhizobial mutants defective in the production of exopolysaccharides (EPSs), lipopolysaccharides (LPSs), or capsular polysaccharides are usually affected in symbiosis with their plant hosts. In the present study, we evaluated the role of the combined effects of LPS and EPS II in cell-to-cell and cell-to-surface interactions in Sinorhizobium meliloti by studying planktonic cell autoaggregation, biofilm formation, and symbiosis with the host plant Medicago sativa. The lpsB mutant, which has a defective core portion of LPS, exhibited a reduction in biofilm formation on abiotic surfaces as well as altered biofilm architecture compared with the wild-type Rm8530 strain. Atomic force microscopy and confocal laser microscopy revealed an increase in polar cell-to-cell interactions in the lpsB mutant, which might account for the biofilm deficiency. However, a certain level of biofilm development was observed in the lpsB strain compared with the EPS II-defective mutant strains. Autoaggregation experiments carried out with LPS and EPS mutant strains showed that both polysaccharides have an impact on the cell-to-cell adhesive interactions of planktonic bacteria. Although the lpsB mutation and the loss of EPS II production strongly stimulated early attachment to alfalfa roots, the number of nodules induced in M. sativa was not increased. Taken together, this work demonstrates that S. meliloti interactions with biotic and abiotic surfaces depend on the interplay between LPS and EPS II.
细菌表面分子对于成功建立根瘤菌-豆科植物共生关系至关重要,而且在大多数细菌中,对于粘附特性、表面定植和作为防御屏障也至关重要。产生胞外多糖(EPS)、脂多糖(LPS)或荚膜多糖缺陷的根瘤菌突变体通常在与植物宿主共生时受到影响。在本研究中,我们通过研究浮游细胞自动聚集、生物膜形成以及与宿主植物紫花苜蓿的共生关系,评估了 LPS 和 EPS II 的联合效应对根瘤菌属 meliloti 细胞间和细胞与表面相互作用的影响。lpsB 突变体,其 LPS 的核心部分有缺陷,与野生型 Rm8530 菌株相比,在非生物表面的生物膜形成以及生物膜结构方面都有所减少。原子力显微镜和共聚焦激光显微镜显示,lpsB 突变体中极性细胞间相互作用增加,这可能是生物膜缺陷的原因。然而,与 EPS II 缺陷突变菌株相比,lpsB 菌株中观察到一定水平的生物膜发育。用 LPS 和 EPS 突变菌株进行的自动聚集实验表明,两种多糖都对浮游细菌的细胞间粘附相互作用有影响。尽管 lpsB 突变和 EPS II 产生的丧失强烈刺激了苜蓿根的早期附着,但在 M. sativa 中诱导的根瘤数量并没有增加。综上所述,这项工作表明,根瘤菌属 meliloti 与生物和非生物表面的相互作用取决于 LPS 和 EPS II 之间的相互作用。